Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance.

[1]  E. Richards 5S RNA. An analysis of possible base pairing schemes. , 2005, European journal of biochemistry.

[2]  R. Shulman,et al.  High-resolution nuclear magnetic resonance studies of the structure of transfer ribonucleic acid and other polynucleotides in solution , 1974 .

[3]  D. Kearns,et al.  Investigation of the base‐pairing structure of the anticodon hairpin from E. coli initiator tRNA by high‐resolution nmr , 1974, Biopolymers.

[4]  R. Shulman,et al.  Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs. , 1973, Journal of molecular biology.

[5]  C. W. Hilbers,et al.  Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. , 1973, Journal of molecular biology.

[6]  P. Philippsen,et al.  The conformational transitions in yeast tRNAPhe as studied with tRNAPhe fragments. , 1973, European journal of biochemistry.

[7]  G. Bellemare,et al.  Identification of the nucleotide sequences involved in the interaction between Escherichia coli 5 RNA and specific 50 S subunit proteins. , 1973, Journal of molecular biology.

[8]  R. Vigne,et al.  A common conformational feature in several prokaryotic and eukaryotic 5 S RNAs: a highly exposed, single-stranded loop around position 40. , 1973, Journal of molecular biology.

[9]  G. Bellemare,et al.  Selective reaction of glyoxal with guanine residues in native and denatured Escherichia coli 5S RNA. , 1973, Biochimie.

[10]  J. G. Chirikjian,et al.  High resolution nuclear magnetic resonance study of base pairing in the native and denatured conformers of transfer RNA3Leu , 1973 .

[11]  D. Crothers,et al.  Free energy of imperfect nucleic acid helices. II. Small hairpin loops. , 1973, Journal of molecular biology.

[12]  R. Shulman,et al.  Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. , 1972, Journal of molecular biology.

[13]  R. Shulman,et al.  The extent of base pairing in 5 s RNA. Yeast 5 s RNA. , 1972, Journal of molecular biology.

[14]  A. Mirzabekov,et al.  5 s RNA conformation. Studies of its partial T 1 ribonuclease digestion by gel electrophoresis and two-dimensional thin-layer chromatography. , 1972, Journal of molecular biology.

[15]  G. Bellemare,et al.  Demonstration of a highly exposed region in Escherichia coli 5 s RNA by partial hydrolysis with ribonuclease IV and sheep kidney nuclease. , 1972, Journal of molecular biology.

[16]  D. Crothers,et al.  Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. , 1972, Biochemistry.

[17]  P. Connors,et al.  Size and shape of 5 S ribosomal RNA. , 1972, Journal of molecular biology.

[18]  G. Bellemare,et al.  Comparison of the physical and optical properties of Escherichia coli and sea urchin 5 s ribosomal RNA's. , 1972, Journal of molecular biology.

[19]  ILI. E E. G. RICHARDS,et al.  Optical properties and base pairing of E. coil 5S RNA , 1972 .

[20]  S. Chládek Possible relationship of peptidyl transferase binding sites, 5S RNA and peptidyl-tRNA. , 1971, Biochemical and biophysical research communications.

[21]  R. Shulman,et al.  High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules. , 1971, Journal of molecular biology.

[22]  B. Jordan,et al.  5 s RNA molecules formed by reassociation of separated fragments. , 1971, Journal of molecular biology.

[23]  I. Tinoco,et al.  Estimation of Secondary Structure in Ribonucleic Acids , 1971, Nature.

[24]  B. Jordan Studies on 5 s RNA conformation by partial ribonuclease hydrolysis. , 1971, Journal of molecular biology.

[25]  R. Shulman,et al.  High Resolution Nuclear Magnetic Resonance Studies of Hydrogen Bonded Protons of tRNA in Water , 1971, Nature.

[26]  B. Reid,et al.  Effect of cleaving the dihydrouridine loop and the ribothymidine loop on the amino acid acceptor activity of yeast phenylalanine transfer ribonucleic acid. , 1970, The Journal of biological chemistry.

[27]  R. Shulman,et al.  Nuclear magnetic resonance study of cyanoferrimyoglobin; identification of pseudocontact shifts. , 1970, Journal of molecular biology.

[28]  P. Doty,et al.  Derivation of the Secondary Structure of 5S RNA from its Binding of Complementary Oligonucleotides , 1970, Nature.

[29]  R. Monier,et al.  Some optical properties of 5S-RNA from E. coli. , 1968, Biochemical and biophysical research communications.

[30]  M. Litt A simple procedure for the purification of yeast phenylalanine transfer RNA. , 1968, Biochemical and biophysical research communications.

[31]  I. Raacke "Cloverleaf" conformation for 5S RNAs. , 1968, Biochemical and biophysical research communications.

[32]  V. Erdmann,et al.  Amount of Adenine and Uracil Base Pairs in E. coli 23S, 16S and 5S Ribosomal RNA , 1968, Nature.

[33]  H. Boedtker,et al.  The ordered structure of 5S RNA. , 1967, Biochemical and biophysical research communications.

[34]  C. Cantor Possible Conformations of 5S Ribosomal RNA , 1967, Nature.

[35]  F. Sanger,et al.  Nucleotide Sequence of 5S-ribosomal RNA from Escherichia coli , 1967, Nature.

[36]  R. Vigne,et al.  Conformational analysis of RNA molecules by partial RNAse digestion and two dimensional acrylamide gel electrophoresis. Application to E. coli 5S RNA. , 1971, Biochimie.

[37]  I. Lapidus,et al.  Secondary structure of 5 S ribosomal RNA. , 1970, Journal of theoretical biology.