Radiance Transfer Biclustering for Real-Time All-Frequency Biscale Rendering

We present a real-time algorithm to render all-frequency radiance transfer at both macroscale and mesoscale. At a mesoscale, the shading is computed on a per-pixel basis by integrating the product of the local incident radiance and a bidirectional texture function. While at a macroscale, the precomputed transfer matrix, which transfers the global incident radiance to the local incident radiance at each vertex, is losslessly compressed by a novel biclustering technique. The biclustering is directly applied on the radiance transfer represented in a pixel basis, on which the BTF is naturally defined. It exploits the coherence in the transfer matrix and a property of matrix element values to reduce both storage and runtime computation cost. Our new algorithm renders at real-time frame rates realistic materials and shadows under all-frequency direct environment lighting. Comparisons show that our algorithm is able to generate images that compare favorably with reference ray tracing results, and has obvious advantages over alternative methods in storage and preprocessing time.

[1]  Rui Wang,et al.  All-frequency relighting of glossy objects , 2006, TOGS.

[2]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[3]  Marc Levoy,et al.  Symmetric photography: exploiting data-sparseness in reflectance fields , 2006, EGSR '06.

[4]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[5]  Rui Wang,et al.  Eurographics Symposium on Rendering (2004) All-frequency Relighting of Non-diffuse Objects Using Separable Brdf Approximation , 2022 .

[6]  Baining Guo,et al.  Synthesis and rendering of bidirectional texture functions on arbitrary surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[7]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[8]  Peter-Pike J. Sloan,et al.  Local, deformable precomputed radiance transfer , 2005, ACM Trans. Graph..

[9]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[10]  Stephen Lin,et al.  Generalized Displacement Maps , 2004, Rendering Techniques.

[11]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[13]  Ralf Sarlette,et al.  Efficient and Realistic Visualization of Cloth , 2003, Rendering Techniques.

[14]  H. Shum,et al.  Shell texture functions , 2004, SIGGRAPH 2004.

[15]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[16]  Ares Lagae,et al.  Interactive Rendering with Bidirectional Texture Functions , 2003, Comput. Graph. Forum.

[17]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[18]  Hans-Peter Seidel,et al.  Real-time, all-frequency shadows in dynamic scenes , 2008, ACM Trans. Graph..

[19]  Peter Shirley,et al.  Steerable illumination textures , 2002, TOGS.

[20]  Shi-Min Hu,et al.  Spherical Piecewise Constant Basis Functions for All-Frequency Precomputed Radiance Transfer , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Demetri Terzopoulos,et al.  TensorTextures: multilinear image-based rendering , 2004, ACM Trans. Graph..

[22]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[23]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[24]  Hans-Peter Seidel,et al.  Illuminating micro geometry based on precomputed visibility , 2000, SIGGRAPH.

[25]  Reinhard Klein,et al.  Reflectance field based real-time, high-quality rendering of bidirectional texture functions , 2004, Comput. Graph..

[26]  Pat Hanrahan,et al.  Triple product wavelet integrals for all-frequency relighting , 2004, ACM Trans. Graph..

[27]  Frédo Durand,et al.  Interactive editing and modeling of bidirectional texture functions , 2007, ACM Trans. Graph..

[28]  Ralf Sarlette,et al.  Acquisition, Synthesis, and Rendering of Bidirectional Texture Functions , 2005, Comput. Graph. Forum.

[29]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[30]  Stephen Lin,et al.  View-dependent displacement mapping , 2003, ACM Trans. Graph..

[31]  Rui Wang,et al.  Fast, realistic lighting and material design using nonlinear cut approximation , 2008, SIGGRAPH Asia '08.

[32]  Baining Guo,et al.  Capturing and rendering geometry details for BTF-mapped surfaces , 2005, The Visual Computer.

[33]  Hans-Peter Seidel,et al.  Efficient Cloth Modeling and Rendering , 2001, Rendering Techniques.

[34]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[35]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[36]  Hans-Peter Seidel,et al.  Convolution Shadow Maps Percentage Closer Filtering Csm with 7x7 Blur and Mip-mapping , 2022 .

[37]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[38]  Kun Zhou,et al.  Decorating surfaces with bidirectional texture functions , 2005, IEEE Transactions on Visualization and Computer Graphics.

[39]  Harry Shum,et al.  Bi-scale radiance transfer , 2003, ACM Trans. Graph..

[40]  Baining Guo,et al.  Synthesis of bidirectional texture functions on arbitrary surfaces , 2002, SIGGRAPH.