Effects of mutations in Drosophila nicotinic acetylcholine receptor subunits on sensitivity to insecticides targeting nicotinic acetylcholine receptors

[1]  Michael R. Loso,et al.  Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. , 2011, Insect biochemistry and molecular biology.

[2]  Andrew J. Crossthwaite,et al.  Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae , 2011, BMC Neuroscience.

[3]  Michael R. Loso,et al.  Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. , 2011, Journal of agricultural and food chemistry.

[4]  Michael R. Loso,et al.  Biological characterization of sulfoxaflor, a novel insecticide. , 2011, Pest management science.

[5]  S. Foster,et al.  Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae , 2010, PLoS genetics.

[6]  W. Pak,et al.  A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. , 2010, Insect biochemistry and molecular biology.

[7]  Sarjeet S. Gill,et al.  Insect control: biological and synthetic agents. , 2010 .

[8]  David B Sattelle,et al.  Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights , 2009, Molecular Pharmacology.

[9]  J. A. Mckenzie,et al.  Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. , 2008, Insect biochemistry and molecular biology.

[10]  J. A. Mckenzie,et al.  A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. , 2007, Insect biochemistry and molecular biology.

[11]  Zewen Liu,et al.  A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides , 2006, Journal of neurochemistry.

[12]  J. Casida,et al.  Insect nicotinic acetylcholine receptors: neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. , 2006, Journal of agricultural and food chemistry.

[13]  N. Prabhaker,et al.  Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae) , 2005, Bulletin of Entomological Research.

[14]  Zewen Liu,et al.  A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Casida,et al.  Neonicotinoid insecticide toxicology: mechanisms of selective action. , 2005, Annual review of pharmacology and toxicology.

[16]  J. Casida,et al.  Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel. , 2003, Journal of agricultural and food chemistry.

[17]  R. Nauen,et al.  Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). , 2002, Pest management science.

[18]  John C. Palumbo,et al.  Insecticidal control and resistance management for Bemisia tabaci , 2001 .

[19]  Ian Denholm,et al.  Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci , 1998 .

[20]  M. Sakuma Probit analysis of preference data , 1998 .

[21]  R. Nauen,et al.  Imidacloprid, a Novel Chloronicotinyl Insecticide: Biological Activity and Agricultural Importance , 1998 .

[22]  Isaac Ishaaya,et al.  Insecticides with Novel Modes of Action: An Overview , 1998 .

[23]  A. Cock,et al.  Buprofezin: A Novel Chitin Synthesis Inhibitor Affecting Specifically Planthoppers, Whiteflies and Scale Insects , 1998 .