A class of invariants of the topological conjugacy of subshifts
暂无分享,去创建一个
[1] Wolfgang Krieger,et al. A lambda-graph system for the dyck shift and its K-groups , 2003 .
[2] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[3] Mike Boyle,et al. Almost Markov and shift equivalent sofic systems , 1988 .
[4] Umberto Eco,et al. Theory of Codes , 1976 .
[5] Georges Hansel,et al. Systèmes Codés , 1986, Theor. Comput. Sci..
[6] C. Pinzari,et al. KMS States, Entropy and the Variational Principle¶in Full C*-Dynamical Systems , 2000 .
[7] R. F. Williams. Classification of subshifts of finite type , 1973 .
[8] Wolfgang Krieger. On Subshifts and Topological Markov Chains , 2000 .
[9] Kengo Matsumoto. C*-algebras associated with presentations of subshifts , 2002 .
[10] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[11] M. W. Shields. An Introduction to Automata Theory , 1988 .
[12] O. Bratteli. Inductive limits of finite dimensional C*-algebras , 1972 .
[13] On a syntactically defined invariant of symbolic dynamics , 2000, Ergodic Theory and Dynamical Systems.
[14] Kengo Matsumoto,et al. Shannon graphs, subshifts and lambda-graph systems , 2002 .