Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design

Given an undirected graph <i>G</i> = (<i>V,E</i>) withnonnegative costs on its edges, a root node <i>r</i> <i>V</i>, aset of demands <i>D</i> <i>V</i> with demand <i>v</i> <i>D</i>wishing to route <i>w(v)</i> units of flow (weight) to <i>r</i>,and a positive number <i>k</i>, the <i>Capacitated Minimum SteinerTree</i> (CMStT) problem asks for a minimum Steiner tree, rooted at<i>r</i>, spanning the vertices in <i>D</i> *&lcub;<i>r</i>&rcub;, in which the sum of the vertexweights in every subtree connected to <i>r</i> is at most <i>k</i>.When <i>D</i> &equals; <i>V</i>, this problem is known as the<i>Capacitated Minimum Spanning Tree</i> (CMST) problem. Both CMsTand CMST problems are NP-hard. In this article, we presentapproximation algorithms for these problems and several of theirvariants in network design. Our main results are the following: ---We present a (³ Á<sub><i>ST</i></sub> +2)-approximation algorithm for the CMStT problem, where ³ isthe <i>inverse Steiner ratio</i>, and Á<sub><i>ST</i></sub>is the best achievable approximation ratio for the Steiner treeproblem. Our ratio improves the current best ratio of2Á<sub><i>ST</i></sub> + 2 for this problem. ---In particular, we obtain (³ + 2)-approximation ratio forthe CMST problem, which is an improvement over the current bestratio of 4 for this problem. For points in Euclidean andrectilinear planes, our result translates into ratios of 3.1548 and3.5, respectively. ---For instances in the plane, under the<i>L</i><sub><i>p</i></sub> norm, with the vertices in <i>D</i>having uniform weights, we present a nontrivial(7/5Á<sub><i>ST</i></sub> + 3/2)-approximation algorithm forthe CMStT problem. This translates into a ratio of 2.9 for the CMSTproblem with uniform vertex weights in the<i>L</i><sub><i>p</i></sub>metric plane. Our ratio of 2.9 solvesthe long-standing open problem of obtaining any ratio better than 3for this case. ---For the CMST problem, we show how to obtain a 2-approximationfor graphs in metric spaces with unit vertex weights and <i>k</i> =3,4. ---For the <i>budgeted</i> CMST problem, in which the weights ofthe subtrees connected to <i>r</i> could be up to ± <i>k</i>instead of <i>k</i> (± e 1), we obtain a ratio of ³&plus; 2/±.

[1]  Balaji Raghavachari,et al.  Approximation Algorithms for the Capacitated Minimum Spanning Tree Problem and Its Variants in Network Design , 2004, ICALP.

[2]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[3]  K. Mani Chandy,et al.  The Capacitated Minimum Spanning Tree , 1973, Networks.

[4]  Wushow Chou,et al.  A Unified Algorithm for Designing Multidrop Teleprocessing Networks , 1974, IEEE Trans. Commun..

[5]  José Pinto Paixão,et al.  Dynamic programming based heuristics for the topological design of local access networks , 1991, Ann. Oper. Res..

[6]  V. Kevin Moore Whitney A study of optimal file site assignment and communication network configuration in remote-access computer message processing and communication systems , 1970 .

[7]  P. McGregor,et al.  Network Design: An Algorithm for the Access Facility Location Problem , 1977, IEEE Trans. Commun..

[8]  R. Ravi,et al.  Approximation algorithms for a capacitated network design problem , 2000, APPROX.

[9]  R. EsauL.,et al.  On teleprocessing system design , 1966 .

[10]  Luís Gouveia,et al.  A 2n Constraint Formulation for the Capacitated Minimal Spanning Tree Problem , 1995, Oper. Res..

[11]  Michel Gendreau,et al.  A TABU SEARCH ALGORITHM FOR THE CAPACITATED SHORTEST SPANNING TREE PROBLEM. , 1997 .

[12]  Bezalel Gavish,et al.  Topological design of centralized computer networks - formulations and algorithms , 1982, Networks.

[13]  Richard M. Van Slyke,et al.  Optimal design of centralized computer networks , 1971, Networks.

[14]  Jeffrey S. Salowe,et al.  Low-degree minimum spanning trees , 1995, Discret. Comput. Geom..

[15]  Bezalel Gavish,et al.  Augmented Lagrangean Based Algorithms for Centralized Network Design , 1985, IEEE Trans. Commun..

[16]  Bezalel Gavish,et al.  Formulations and Algorithms for the Capacitated Minimal Directed Tree Problem , 1983, JACM.

[17]  Balaji Raghavachari,et al.  Survivable network design: the capacitated minimum spanning network problem , 2004, Inf. Process. Lett..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  G. Michael Schneider,et al.  An Algorithm for the Design of Multilevel Concentrator Networks , 1982, Comput. Networks.

[20]  Stefan Voß,et al.  Capacitated minimum spanning trees: algorithms using intelligent search , 1995 .

[21]  M. Karnaugh A New Class of Algorithms for Multipoint Network Optimization , 1976, IEEE Trans. Commun..

[22]  Stefan Voß,et al.  Tabu search techniques for the quadratic semiassignment problem , 1992 .

[23]  James Martin Design of Real-Time Computer Systems , 1967 .

[24]  Clyde L. Monma,et al.  Transitions in geometric minimum spanning trees , 1991, SCG '91.

[25]  Nicos Christofides,et al.  Capacitated clustering problems by hybrid simulated annealing and tabu search , 1994 .

[26]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[27]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[28]  Luís Gouveia,et al.  A comparison of directed formulations for the capacitated minimal spanning tree problem , 1993, Telecommun. Syst..

[29]  Aaron Kershenbaum,et al.  Computing capacitated minimal spanning trees efficiently , 1974, Networks.

[30]  B. Gavish,et al.  Heuristics with Constant Error Guarantees for the Design of Tree Networks , 1988 .

[31]  Christos H. Papadimitriou,et al.  The complexity of the capacitated tree problem , 1978, Networks.

[32]  L. R. Esau,et al.  On Teleprocessing System Design Part II: A Method for Approximating the Optimal Network , 1966, IBM Syst. J..

[33]  Dushyant Sharma,et al.  A composite very large-scale neighborhood structure for the capacitated minimum spanning tree problem , 2003, Oper. Res. Lett..

[34]  Aaron Kershenbaum,et al.  Centralized teleprocessing network design , 1976, Networks.

[35]  A. Kershenbaum,et al.  Second-Order Greedy Algorithms for Centralized Teleprocessing Network Design , 1980, IEEE Trans. Commun..

[36]  K. Mani Chandy,et al.  The Design or Multipoint Linkages in a Teleprocessing Tree Network , 1972, IEEE Transactions on Computers.

[37]  Kavindra Malik,et al.  A branch and bound algorithm for the capacitated minimum spanning tree problem , 1993, Networks.

[38]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[39]  Leslie Hall,et al.  Experience with a Cutting Plane Algorithm for the Capacitated Spanning Tree Problem , 1996, INFORMS J. Comput..

[40]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[41]  R. Boorstyn,et al.  Large-Scale Network Topological Optimization , 1977, IEEE Trans. Commun..

[42]  R. Ravi,et al.  Buy-at-bulk network design: approximating the single-sink edge installation problem , 1997, SODA '97.

[43]  Bezalel Gavish,et al.  Topological design of telecommunication networks-local access design methods , 1991, Ann. Oper. Res..

[44]  M. Ferguson,et al.  Topological Design of Multipoint Teleprocessing Networks , 1974, IEEE Trans. Commun..