On Complex-Valued Solutions to a Two-Dimensional Eikonal Equation. II. Existence Theorems

The equation $w^2_x+w^2_y+n^2(x,y)=0,$ which arises in generalizations of geometrical optics, is investigated from a theoretical point of view. Here x and y denote rectangular coordinates in the Euclidean plane, and n is real-valued and strictly positive. A framework is set up that involves a Backlund transformation relating Re(w) and Im(w), second-order partial differential equations in divergence and nondivergence form governing Re(w), a variational integral, and related free boundary problems, boundary value problems, and viscosity solutions. The present paper is a continuation of a preceding one [R. Magnanini and G. Talenti, Contemp. Math. 283, AMS, Providence, RI, 1999, pp. 203--229], where qualitative properties of smooth solutions are offered. Here the existence of the real part of solutions, which need not be smooth, is derived.

[1]  Daniel Bouche,et al.  Méthodes asymptotiques en électromagnétisme , 1994 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[4]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[5]  Donald Ludwig,et al.  Uniform asymptotic expansions at a caustic , 1966 .

[6]  G. Talenti On complex-valued solutions to a 2D eikonal equation , 1995 .

[7]  S. Jonathan Chapman,et al.  On the Theory of Complex Rays , 1999, SIAM Rev..

[8]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[9]  L. Evans On solving certain nonlinear partial differential equations by accretive operator methods , 1980 .

[10]  L. Felsen,et al.  Asymptotic theory for inhomogeneous waves , 1973 .

[11]  B. Dacorogna,et al.  Implicit partial differential equations , 1999 .

[12]  L. B. Felsen,et al.  Evanescent Waves , 1976 .

[13]  Y. Kravtsov,et al.  A MODIFICATION OF THE GEOMETRICAL OPTICS METHOD , 1964 .

[14]  O. A. Ladyzhenskai︠a︡,et al.  Équations aux dérivées partielles de type elliptique , 1968 .

[15]  Donald Ludwig,et al.  Uniform Asymptotic Expansion of the Field Scattered by a Convex Object at High Frequencies , 1967 .

[16]  B. Pini Sull'unicità della soluzione del problema di Dirichlet per le equazioni lineari ellittiche in due variabili , 1956 .

[17]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[18]  W. Ziemer Weakly differentiable functions , 1989 .

[19]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[20]  L. Felsen,et al.  Evanescent waves and complex rays , 1982 .

[21]  Ehud Heyman,et al.  Evanescent waves and complex rays for modal propagation in curved open waveguides , 1983 .

[22]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[23]  A. Friedman Variational principles and free-boundary problems , 1982 .

[24]  F. Fornel Evanescent waves , 2001 .

[25]  P. Einziger,et al.  On the asymptotic theory of inhomogeneous wave tracking , 1980 .

[26]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[27]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[28]  L. Felsen,et al.  Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking , 1974 .

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.