The multienzyme architecture of eukaryotic fatty acid synthases.

[1]  Timm Maier,et al.  The Crystal Structure of a Mammalian Fatty Acid Synthase , 2008, Science.

[2]  Janet L. Smith,et al.  An Enzyme Assembly Line , 2008, Science.

[3]  C. Townsend,et al.  Acyl‐Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases , 2008, Chembiochem : a European journal of chemical biology.

[4]  Zhao-Xun Liang,et al.  Evidence for a novel phosphopantetheinyl transferase domain in the polyketide synthase for enediyne biosynthesis , 2008, FEBS letters.

[5]  T. Ozawa,et al.  Crystal structure of enoyl–acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor , 2008, Protein science : a publication of the Protein Society.

[6]  B. Shen,et al.  A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis , 2008, Proceedings of the National Academy of Sciences.

[7]  Y. van de Peer,et al.  Novel insights into evolution of protistan polyketide synthases through phylogenomic analysis. , 2008, Protist.

[8]  T. J. Simpson,et al.  A Mammalian Type I Fatty Acid Synthase Acyl Carrier Protein Domain Does Not Sequester Acyl Chains* , 2008, Journal of Biological Chemistry.

[9]  A. Witkowski,et al.  Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase. , 2007, Chemistry & biology.

[10]  K. Kavanagh,et al.  Mechanism and Substrate Recognition of Human Holo ACP Synthase , 2007, Chemistry & biology.

[11]  D. Byers,et al.  Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[12]  K. Reynolds,et al.  Antibacterial targets in fatty acid biosynthesis. , 2007, Current opinion in microbiology.

[13]  Chu-Young Kim,et al.  Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. , 2007, Chemistry & biology.

[14]  A. Keatinge-Clay,et al.  A tylosin ketoreductase reveals how chirality is determined in polyketides. , 2007, Chemistry & biology.

[15]  T. Steitz,et al.  The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together , 2007, Cell.

[16]  N. Ban,et al.  Structural Basis for Substrate Delivery by Acyl Carrier Protein in the Yeast Fatty Acid Synthase , 2007, Science.

[17]  Daniel Boehringer,et al.  Structure of Fungal Fatty Acid Synthase and Implications for Iterative Substrate Shuttling , 2007, Science.

[18]  D. Rice,et al.  Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates. , 2007, Journal of molecular biology.

[19]  C. Walsh,et al.  Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. , 2006, Biochemistry.

[20]  Chu-Young Kim,et al.  The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase , 2006 .

[21]  C. Rock,et al.  Inhibiting Bacterial Fatty Acid Synthesis* , 2006, Journal of Biological Chemistry.

[22]  A. D'arcy,et al.  Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[23]  B. Fox,et al.  Solution structures of spinach acyl carrier protein with decanoate and stearate. , 2006, Biochemistry.

[24]  M. Marahiel,et al.  Conformational Switches Modulate Protein Interactions in Peptide Antibiotic Synthetases , 2006, Science.

[25]  Robert M Stroud,et al.  The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. , 2006, Structure.

[26]  Timm Maier,et al.  Architecture of a Fungal Fatty Acid Synthase at 5 Å Resolution , 2006, Science.

[27]  Timm Maier,et al.  Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution , 2006, Science.

[28]  H. Oikawa,et al.  An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. , 2005, Chemistry & biology.

[29]  Rolf Müller,et al.  Evolutionary implications of bacterial polyketide synthases. , 2005, Molecular biology and evolution.

[30]  Jie J. Zheng,et al.  The structural biology of type II fatty acid biosynthesis. , 2005, Annual review of biochemistry.

[31]  A. Witkowski,et al.  Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase. , 2005, Biochemistry.

[32]  James Z. Chadick,et al.  Structure and molecular organization of mammalian fatty acid synthase , 2005, Nature Structural &Molecular Biology.

[33]  K. Fiebig,et al.  The Structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[34]  B. Chakravarty,et al.  Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Schweizer,et al.  Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems , 2004, Microbiology and Molecular Biology Reviews.

[36]  William H Gerwick,et al.  Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. , 2004, Chemistry & biology.

[37]  Hui Hong,et al.  Identification of a Phosphopantetheinyl Transferase for Erythromycin Biosynthesis in Saccharopolyspora erythraea. , 2004 .

[38]  M. Loda,et al.  The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. , 2004, Cancer cell.

[39]  Bainan Wu,et al.  Key Residues Responsible for Acyl Carrier Protein and β-Ketoacyl-Acyl Carrier Protein Reductase (FabG) Interaction* , 2003, Journal of Biological Chemistry.

[40]  Andrzej Witkowski,et al.  Structural and functional organization of the animal fatty acid synthase. , 2003, Progress in lipid research.

[41]  Y. Kallberg,et al.  Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). , 2003, Chemico-biological interactions.

[42]  M. Reed,et al.  The type I rat fatty acid synthase ACP shows structural homology and analogous biochemical properties to type II ACPs. , 2003, Organic & biomolecular chemistry.

[43]  B. Persson,et al.  Medium‐chain dehydrogenases/reductases (MDR) , 2002 .

[44]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[45]  K. Parris,et al.  Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. , 2000, Structure.

[46]  M. Mittag,et al.  A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. , 2000, European journal of biochemistry.

[47]  I. Taylor,et al.  Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. , 1999, Biochemistry.

[48]  Antoni R. Slabas,et al.  Molecular basis of triclosan activity , 1999, Nature.

[49]  M. Bibb,et al.  Heterologously expressed acyl carrier protein domain of rat fatty acid synthase functions in Escherichia coli fatty acid synthase and Streptomyces coelicolor polyketide synthase systems. , 1998, Chemistry & biology.

[50]  J. Sacchettini,et al.  Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. , 1998, Science.

[51]  A. Witkowski,et al.  Characterization of the interthiol acyltransferase reaction catalyzed by the beta-ketoacyl synthase domain of the animal fatty acid synthase. , 1997, Biochemistry.

[52]  N. Keller,et al.  Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. L. Smith,et al.  Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. , 1996, Structure.

[54]  D. Ollis,et al.  Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. , 1995, Journal of molecular biology.

[55]  R. Perham Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. , 1991, Biochemistry.

[56]  P. Leadlay,et al.  An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea , 1990, Nature.

[57]  S. Wakil,et al.  Fatty acid synthase, a proficient multifunctional enzyme. , 1989, Biochemistry.

[58]  S. Wakil,et al.  On the question of half- or full-site reactivity of animal fatty acid synthetase. , 1984, The Journal of biological chemistry.

[59]  K. Hübner,et al.  Identity of malonyl and palmitoyl transferase of fatty acid synthetase from yeast. 2. A comparison of active-site peptides. , 1979, European journal of biochemistry.

[60]  K. Hübner,et al.  Identity of malonyl and palmitoyl transferase of fatty acid synthetase from yeast. Functional interrelationships between the acyl transferases. , 1979, European journal of biochemistry.

[61]  C. Lin,et al.  Properties of the thioesterase component obtained by limited trypsinization of the fatty acid synthetase multienzyme complex. , 1978, The Journal of biological chemistry.

[62]  L. Libertini,et al.  Purification and properties of a thioesterase from lactating rat mammary gland which modifies the product specificity of fatty acid synthetase. , 1978, The Journal of biological chemistry.

[63]  F. Lynen,et al.  The specificity of yeast fatty-acid synthetase with respect to the "priming" substrate. Decanoyl-coA and derivatives as "primers" of fatty-acid synthesis in vitro. , 1973, European journal of biochemistry.

[64]  F. Lynen,et al.  Fatty acyl transferase. Characterization of the enzyme as part of the yeast fatty acid synthetase complex by the use of radioactively labeled coenzyme A. , 1970, European journal of biochemistry.

[65]  D. Oesterhelt,et al.  Die Synthese verschiedener Carbonsäuren durch den Multienzymkomplex der Fettsäuresynthese aus Hefe und die Erklärung ihrer Bildung , 1969 .

[66]  Shiou-Chuan Tsai,et al.  The Type I Fatty Acid and Polyketide Synthases: A Tale of Two Megasynthases , 2008 .

[67]  S. Kridel,et al.  Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat , 2007, Nature Structural &Molecular Biology.

[68]  D. Oesterhelt,et al.  [Synthesis of various carboxylic acids by the fatty acid synthetase multienzyme complex of yeast and the explanation for their structure]. , 1969, European journal of biochemistry.