Attending to visual motion: localizing and classifying affine motion patterns

The Selective Tuning Model is a proposal for modelling visual attention in primates and humans. This paper describes ongoing research to include attention to motion stimuli within the model. The effort is unique because it seems that no past model presents a motion hierarchy plus attention to motion. We propose a biologically realistic model of the primate visual motion system attempting to explain how a hierarchical feedforward network consisting of layers representing cortical areas V1, MT, MST, and 7a detects and classifies different kinds of motion patterns. The STM model is then integrated into this hierarchy demonstrating that successfully attending to motion patterns results in localization (segmentation) and labeling of those patterns.

[1]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[2]  Ellen C. Hildreth,et al.  The perceptual buildup of three-dimensional structure from motion , 1989, Perception & psychophysics.

[3]  G. Caputo,et al.  Attentional selection by distractor suppression , 1998, Vision Research.

[4]  Christopher C. Pack,et al.  A Neural Model of Smooth Pursuit Control and Motion Perception by Cortical Area MST , 2001, Journal of Cognitive Neuroscience.

[5]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[7]  Mubarak Shah,et al.  Visual Recognition of Activities, Gestures, Facial Expressions and Speech: An Introduction and a Perspective , 1997 .

[8]  Eileen Kowler,et al.  Attentional interference at small spatial separations , 1999, Vision Research.

[9]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[10]  G. Orban,et al.  Speed and direction selectivity of macaque middle temporal neurons. , 1993, Journal of neurophysiology.

[11]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[12]  L M Vaina,et al.  Computational modelling of optic flow selectivity in MSTd neurons. , 1998, Network.

[13]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[14]  John K. Tsotsos,et al.  A framework for visual motion understanding , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  J A Perrone,et al.  Emulating the Visual Receptive-Field Properties of MST Neurons with a Template Model of Heading Estimation , 1998, The Journal of Neuroscience.

[16]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  H. Nagel,et al.  On the Selection of Critical Points and Local Curvature Extrema of Region Boundaries for Interframe Matching , 1983 .

[18]  John K. Tsotsos,et al.  The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item , 2003, Vision Research.

[19]  G A Orban,et al.  Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. , 2000, Cerebral cortex.

[20]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[21]  T. Meese,et al.  Spiral mechanisms are required to account for summation of complex motion components , 2002, Vision Research.

[22]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[23]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[25]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[26]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[27]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[28]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[29]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[31]  Constance S. Royden,et al.  Motion perception , 1998 .

[32]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[33]  Jake K. Aggarwal,et al.  Nonrigid Motion Analysis: Articulated and Elastic Motion , 1998, Comput. Vis. Image Underst..

[34]  John K. Tsotsos,et al.  Attending to visual motion , 2005, Comput. Vis. Image Underst..

[35]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[36]  T J Sejnowski,et al.  A Model for Encoding Multiple Object Motions and Self-Motion in Area MST of Primate Visual Cortex , 1998, The Journal of Neuroscience.

[37]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[38]  Martin A. Giese Neural field model for the recognition of biological motion patterns , 2000 .

[39]  Mubarak Shah,et al.  A survey of motion analysis from moving light displays , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Hans-Hellmut Nagel,et al.  Tracking Persons in Monocular Image Sequences , 1999, Comput. Vis. Image Underst..

[41]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[42]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[43]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[44]  R A Andersen,et al.  Neural responses to velocity gradients in macaque cortical area MT , 1996, Visual Neuroscience.

[45]  R. Wurtz,et al.  Medial Superior Temporal Area Neurons Respond to Speed Patterns in Optic Flow , 1997, The Journal of Neuroscience.

[46]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[47]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.