High-resolution seismic array imaging based on an SEM-FK hybrid method

We demonstrate the feasibility of high-resolution seismic array imaging based on teleseismic recordings using full numerical wave simulations. We develop a hybrid method that interfaces a frequency–wavenumber (FK) calculation, which provides analytical solutions to 1-D layered background models with a spectral-element (SEM) numerical solver to calculate synthetic responses of local media to plane-wave incidence.This hybrid method accurately deals with local heterogeneities and discontinuity undulations, and represents an efficient tool for the forward modelling of teleseismic coda (including converted and scattered) waves. We benchmark the accuracy of the SEM-FK hybrid method against FK solutions for 1-D media. We then compute sensitivity kernels for teleseismic coda waves by interacting the forward teleseismic waves with an adjoint wavefield, produced by injecting coda waves as adjoint sources, based on adjoint techniques. These sensitivity kernels provide the basis for mapping variations in subsurface discontinuities, density and velocity structures through non-linear conjugate-gradient methods. We illustrate various synthetic imaging experiments, including discontinuity characterization, volumetric structural inversion for the crust or subduction zones. These tests show that using pre-conditioners based upon the scaled product of sensitivity kernels for different phases, combining finite-frequency traveltime and waveform inversion, and/or adopting hierarchical inversions from longto short-period waveforms could reduce the non-linearity of the seismic inverse problem and speed up its convergence. The encouraging results of these synthetic examples suggest that inversion of teleseismic coda phases based on the SEM-FK hybrid method and adjoint techniques is a promising tool for structural imaging beneath dense seismic arrays.

[1]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .

[2]  Dimitri Komatitsch,et al.  The spectral-element method in seismology , 2013 .

[3]  E. Engdahl,et al.  A new global model for P wave speed variations in Earth's mantle , 2008 .

[4]  Luis Rivera,et al.  A note on the dynamic and static displacements from a point source in multilayered media , 2002 .

[5]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[6]  Donald V. Helmberger,et al.  A two-dimensional P-SV hybrid method and its application to modeling localized structures near the core-mantle boundary , 1998 .

[7]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[8]  Masayuki Obayashi,et al.  Subducting slabs stagnant in the mantle transition zone , 1992 .

[9]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[10]  J. Revenaugh,et al.  Lithospheric imaging via teleseismic scattering tomography , 2004 .

[11]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[12]  Charles A. Langston,et al.  Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves , 1977, Bulletin of the Seismological Society of America.

[13]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[14]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[15]  H. Shiobara,et al.  Stagnant slab : A review , 2009 .

[16]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[17]  Senén Sandoval,et al.  High-resolution body wave tomography beneath the SVEKALAPKO array – II. Anomalous upper mantle structure beneath the central Baltic Shield , 2004 .

[18]  Guust Nolet,et al.  A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun , 2008 .

[19]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[20]  R. Kind,et al.  Seismic Images of the Biggest Crash on Earth , 2010, Science.

[21]  J. Revenaugh A Scattered-Wave Image of Subduction Beneath the Transverse Ranges , 1995, Science.

[22]  A. Abubakar,et al.  2.5-D forward and inverse modelling of full-waveform elastic seismic survey , 2013 .

[23]  S. Lee,et al.  Mantle plumes and associated flow beneath Arabia and East Africa , 2011 .

[24]  Webb,et al.  Phase velocities of rayleigh waves in the MELT experiment on the east pacific rise , 1998, Science.

[25]  D. Komatitsch,et al.  Numerical Simulation of Ground Rotations along 2D Topographical Profiles under the Incidence of Elastic Plane Waves , 2009 .

[26]  G. Nolet A Breviary of Seismic Tomography: Frontmatter , 2008 .

[27]  R. Clayton,et al.  Regional mapping of the crustal structure in southern California from receiver functions , 2007 .

[28]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[29]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[30]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[31]  Carl Tape,et al.  An automated time-window selection algorithm for seismic tomography , 2009 .

[32]  Barbara Romanowicz,et al.  Using seismic waves to image Earth's internal structure , 2008, Nature.

[33]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory , 2003 .

[34]  M. Toksöz,et al.  Diffraction tomography and multisource holography applied to seismic imaging , 1987 .

[35]  Paul Christiano,et al.  On the effective seismic input for non-linear soil-structure interaction systems , 1984 .

[36]  Joyce R. McLaughlin,et al.  A finite-difference algorithm for full waveform teleseismic tomography , 2010 .

[37]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[38]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[39]  Dimitri Komatitsch,et al.  A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model , 2013 .

[40]  H. Kanamori,et al.  Waveform modeling of the slab beneath Japan , 2007 .

[41]  E. Wielandt,et al.  Interpretation of seismic surface waves in regional networks: joint estimation of wavefield geometry and local phase velocity. Method and numerical tests , 1995 .

[42]  J. Tromp,et al.  Finite-Frequency Kernels Based on Adjoint Methods , 2006 .

[43]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[44]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[45]  Jean-Pierre Vilotte,et al.  Spectral Element Analysis in Seismology , 2007 .

[46]  D. Komatitsch,et al.  Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method , 2004 .

[47]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[48]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[49]  Nicholas Rawlinson,et al.  Seismic tomography: a window into deep Earth , 2010 .

[50]  S. Greenhalgh,et al.  Wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in general anisotropic media , 2012 .

[51]  Barbara Romanowicz,et al.  GLOBAL MANTLE TOMOGRAPHY: Progress Status in the Past 10 Years , 2003 .

[52]  Y. Gu Arrays and array methods in global seismology , 2010 .

[53]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[54]  R. Allen,et al.  Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities , 2011 .

[55]  Jeroen Tromp,et al.  Supplementary information for Structure of the European Upper Mantle revealed by adjoint tomography , 2012 .

[56]  G. Abers,et al.  Seismic imaging of subduction zone metamorphism , 2008 .

[57]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[58]  D. Forsyth,et al.  Rayleigh wave phase velocities, small‐scale convection, and azimuthal anisotropy beneath southern California , 2006 .

[59]  Shu-Huei Hung,et al.  A data‐adaptive, multiscale approach of finite‐frequency, traveltime tomography with special reference to P and S wave data from central Tibet , 2011 .

[60]  Barbara Romanowicz Seismic Tomography of the Earth's Mantle , 1991 .

[61]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[62]  Shear wave splitting in three-dimensional anisotropic media , 2004 .

[63]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[64]  Jean-François Semblat,et al.  Seismic-Wave Propagation in Alluvial Basins and Influence of Site-City Interaction , 2008 .

[65]  Guust Nolet,et al.  Three‐dimensional sensitivity kernels for surface wave observables , 2004 .

[66]  D. Zhao,et al.  Global mantle heterogeneity and its influence on teleseismic regional tomography , 2013 .

[67]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[68]  A. Abubakar,et al.  Preconditioned non‐linear conjugate gradient method for frequency domain full‐waveform seismic inversion , 2011 .

[69]  L. Wen,et al.  A Wave Equation Migration Method for Receiver Function Imaging , 2004 .

[70]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .

[71]  José M. Carcione,et al.  Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures , 1997, Bulletin of the Seismological Society of America.

[72]  John C. VanDecar,et al.  Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares , 1990 .

[73]  Michael G. Bostock,et al.  Migration of scattered teleseismic body waves , 1999 .

[74]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[75]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[76]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[77]  Emanuele Casarotti,et al.  CUBIT and Seismic Wave Propagation Based Upon the Spectral-Element Method: An Advanced Unstructured Mesher for Complex 3D Geological Media , 2008, IMR.

[78]  Ru-Shan Wu,et al.  Scattering characteristics of elastic waves by an elastic heterogeneity , 1985 .

[79]  M. V. Hoop,et al.  Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves , 2012 .

[80]  D. Zhao,et al.  Seismic tomography of the Pacific slab edge under Kamchatka , 2009 .

[81]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[82]  Dapeng Zhao,et al.  Tomography and Dynamics of Western-Pacific Subduction Zones , 2012 .

[83]  R. Kind,et al.  Seismic receiver functions and the lithosphere–asthenosphere boundary , 2012 .

[84]  En-Jui Lee,et al.  Automating seismic waveform analysis for full 3-D waveform inversions , 2013 .

[85]  S. Rondenay Upper Mantle Imaging with Array Recordings of Converted and Scattered Teleseismic Waves , 2009 .

[86]  S. Operto,et al.  A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging , 2013 .

[87]  Carl Tape,et al.  Adjoint Tomography of the Southern California Crust , 2009, Science.

[88]  Jeroen Tromp,et al.  Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method , 2008 .

[89]  Wim Spakman,et al.  Imaging algorithms, accuracy and resolution in delay time tomography , 1988 .

[90]  Giovanni Grasselli,et al.  Spectral-element simulations of elastic wave propagation in exploration and geotechnical applications , 2014 .

[91]  S. Krishnan,et al.  Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes , 2006 .

[92]  Peter Moczo,et al.  Hybrid Seismic Modeling Based on Discrete-wave Number and Finite-difference Methods , 1996 .

[93]  Jeroen Tromp,et al.  Adjoint centroid-moment tensor inversions , 2011 .

[94]  Q. Liu,et al.  High-resolution array imaging using teleseismic converted waves based on adjoint methods , 2011 .

[95]  N. A. Haskell Crustal reflection of plane P and SV waves , 1962 .

[96]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence , 2001 .

[97]  P. Shearer,et al.  Seismic migration processing of P‐SV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States , 2000 .

[98]  Liang Zhao,et al.  A two-dimensional hybrid method for modeling seismic wave propagation in anisotropic media , 2008 .

[99]  Qinya Liu,et al.  Seismic imaging: From classical to adjoint tomography , 2012 .

[100]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[101]  Jeroen Tromp,et al.  Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .

[102]  G. Nolet,et al.  Traveltimes and amplitudes of seismic waves: a re-assessment , 2013 .