Static and dynamic physically non-linear analysis of concrete structures using a hybrid mixed finite element model

A new hybrid-mixed stress finite element model for the static and dynamic non-linear analysis of concrete structures is presented and discussed in this paper. The main feature of this model is the simultaneous and independent approximation of the stress, the strain and the displacement fields in the domain of each element. The displacements along the static boundary, which is considered to include inter-element boundaries, are also directly approximated. To define the approximation bases in the space domain, complete sets of orthonormal Legendre polynomials are used. The adoption of these functions enables the use of analytical closed form solutions for the computation of all linear structural operators and leads to the development of very effective p-refinement procedures. To represent the material quasi-brittle behaviour, a physically non-linear model is considered by using damage mechanics. A simple isotropic damage model is adopted and to control strain localisation problems a non-local integral formulation is considered. To solve the dynamic non-linear governing system, a time integration procedure based on the use of the @a-HHT method is used. For each time step, the solution of the non-linear governing system is achieved using an iterative algorithm based on a secant method. The model being discussed is applied to the solution of two-dimensional structures. To validate the model, to illustrate its potential and to assess its accuracy and numerical efficiency, several numerical examples are discussed and comparisons are made with solutions provided by experimental tests and with other numerical results obtained using conventional finite elements (CFE).

[1]  Corneliu Cismasiu,et al.  Hybrid-Trefftz displacement element for poroelastic media , 2011 .

[2]  Muhammet Karaton,et al.  A continuum damage concrete model for earthquake analysis of concrete gravity dam–reservoir systems , 2005 .

[3]  J. A. Teixeira de Freitas,et al.  Hybrid-Trefftz stress and displacement elements for dynamic analysis of bounded and unbounded saturated porous media , 2008 .

[4]  R. Tinawi,et al.  An application of damage mechanics for seismic analysis of concrete gravity dams , 1995 .

[5]  C. Comi,et al.  Numerical aspects of nonlocal damage analyses of concrete structures , 2001 .

[6]  L. J. Sluys,et al.  A discrete strong discontinuity approach , 2009 .

[7]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[8]  René De Borst Some recent developments in computational modelling of concrete fracture , 1997 .

[9]  Jeeho Lee,et al.  A plastic-damage concrete model for earthquake analysis of dams , 1998 .

[10]  J. A. Freitas,et al.  A hybrid-mixed finite element model based on Legendre polynomials for Reissner-Mindlin plates , 1996 .

[11]  E. Pereira,et al.  Numerical implementation of a hybrid-mixed finite element model for Reissner–Mindlin plates , 2000 .

[12]  J. A. Teixeira de Freitas,et al.  Hybrid finite element formulations for elastodynamic analysis in the frequency domain , 1999 .

[13]  Lorenzo Abellanas Rapún,et al.  Fórmulas y tablas de matemática aplicada , 2004 .

[14]  M. Crisfield Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .

[15]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[16]  E. Oñate,et al.  A plastic-damage model for concrete , 1989 .

[17]  J. A. Teixeira de Freitas,et al.  Mixed finite element solution of time-dependent problems , 2008 .

[18]  C. Silva,et al.  Hybrid-displacement (Trefftz) formulation for softening materials , 2007 .

[19]  Fabrice Gatuingt,et al.  Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials , 2007 .

[20]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[21]  J. A. Freitas,et al.  Non-conventional formulations for the finite element method , 1996 .

[22]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[23]  Jörn Mosler,et al.  3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations , 2003 .

[24]  Rui Faria,et al.  Seismic evaluation of concrete dams via continuum damage models , 1995 .

[25]  J. M. Reynouard,et al.  Mixed mode fracture in plain and reinforced concrete: some results on benchmark tests , 2000 .

[26]  E. T. S. Enginyers de Camins,et al.  Strong discontinuities and continuum plasticity models : the strong discontinuity approach , 1999 .

[27]  Cristina Matos Silva,et al.  Hybrid-mixed stress formulation using continuum damage models , 2005 .

[28]  M. Jirásek,et al.  ROTATING CRACK MODEL WITH TRANSITION TO SCALAR DAMAGE , 1998 .

[29]  I. Moldovan,et al.  Mixed and hybrid stress elements for biphasic media , 2010 .

[30]  Umberto Perego,et al.  A bi-dissipative damage model for concrete with applications to dam engineering , 2000 .

[31]  Rui Faria Avaliação do comportamento sísmico de barragens de betão através de um modelo de dano contínuo , 1994 .

[32]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[33]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[34]  C. Silva,et al.  Hybrid-mixed stress model for the nonlinear analysis of concrete structures , 2005 .

[35]  Peter Wriggers,et al.  Non-linear finite element analysis of solids and structures, volume 1: Essentials, M. A. Crisfield, John Wiley. ISBN: 0-471-92956-5 , 1994 .

[36]  R. Borst,et al.  A plasticity model for mode-I cracking in conrete , 1995 .

[37]  A. Chopra,et al.  The Koyna earthquake and the damage to Koyna Dam , 1973, Bulletin of the Seismological Society of America.

[38]  Cristina Matos Silva,et al.  Continuum damage models with non-conventional finite element formulations , 2010 .

[39]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[40]  J. A. Freitas,et al.  A MIXED‐HYBRID FINITE ELEMENT MODEL BASED ON ORTHOGONAL FUNCTIONS , 1996 .

[41]  J. Ožbolt,et al.  Numerical study of mixed-mode fracture in concrete , 2002 .

[42]  Manolis Papadrakakis,et al.  International Conference on Computational Structures Technology , 2008 .

[43]  Z. Bažant,et al.  Nonlocal Smeared Cracking Model for Concrete Fracture , 1988 .

[44]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[45]  Milan Jirásek,et al.  ADAPTIVE RESOLUTION OF LOCALIZED DAMAGE IN QUASI-BRITTLE MATERIALS , 2004 .

[46]  M. Arruda,et al.  Structural dynamic analysis using hybrid and mixed finite element models , 2012 .

[47]  Claude Bédard,et al.  Fracture Processes of Concrete for NLFEA Methods , 1986 .

[48]  J. P. Moitinho de Almeida,et al.  Non-conventional formulations for the finite element method , 1996 .

[49]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[50]  R. Clough,et al.  Dynamics Of Structures , 1975 .