Bounding the Running Time of Algorithms for Scheduling and Packing Problems

We investigate the implications of the exponential time hypothesis on algorithms for scheduling and packing problems. Our main focus is to show tight lower bounds on the running time of these algorithms. For exact algorithms we investigate the dependence of the running time on the number n of items (for packing) or jobs (for scheduling). We show that many of these problems, including SubsetSum, Knapsack, BinPacking, 〈P2 | | C max 〉, and 〈P2 | |∑wjCj〉, have a lower bound of 2o(n) ×∥I∥O(1). We also develop an algorithmic framework that is able to solve a large number of scheduling and packing problems in time 2O(n) ×∥I∥O(1). Finally, we show that there is no PTAS for MultipleKnapsack and 2d-Knapsack with running time $2^{o}({\frac{1}{\epsilon }}) \times \parallel I \parallel^{O(1)}$ and $n^{o({\frac{1}{\epsilon }})} \times \parallel{I}\parallel^{O(1)}$.

[1]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[2]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[3]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[4]  Ge Xia,et al.  On the computational hardness based on linear FPT-reductions , 2006, J. Comb. Optim..

[5]  Jirí Sgall,et al.  Graph Balancing: A Special Case of Scheduling Unrelated Parallel Machines , 2008, Algorithmica.

[6]  Lin Chen,et al.  On the optimality of approximation schemes for the classical scheduling problem , 2014, SODA.

[7]  Klaus Jansen,et al.  A Fast Approximation Scheme for the Multiple Knapsack Problem , 2012, SOFSEM.

[8]  Ingo Wegener,et al.  Complexity theory - exploring the limits of efficient algorithms , 2005 .

[9]  Francis Y. L. Chin,et al.  Scheduling the Open Shop to Minimize Mean Flow Time , 1982, SIAM J. Comput..

[10]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[11]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[12]  Scott Kerlin,et al.  A Simple O(2sqrt(x)) Algorithm for Partition and Subset Sum , 2010, FCS.

[13]  Hans Kellerer,et al.  Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..

[14]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[15]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[16]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[17]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[18]  Joseph Y.-T. Leung,et al.  Minimizing Mean Flow Time in Two-Machine Open Shops and Flow Shops , 1993, J. Algorithms.

[19]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[20]  Ameur Soukhal,et al.  Exponential-time algorithms for scheduling problems , 2011 .

[21]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[22]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[23]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[24]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Hadas Shachnai,et al.  There is no EPTAS for two-dimensional knapsack , 2010, Inf. Process. Lett..

[27]  R. Steele Optimization , 2005 .

[28]  Teofilo F. Gonzalez,et al.  Open Shop Scheduling to Minimize Finish Time , 1976, JACM.

[29]  Maciej Drozdowski On the complexity of multiprocessor task scheduling , 1995 .

[30]  Richard J. Lipton,et al.  On the complexity of SAT , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[31]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[34]  Thomas E. O’Neil Sub-Exponential Algorithms for 0 / 1 Knapsack and Bin Packing , 2011 .

[35]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..

[36]  Teofilo F. Gonzalez,et al.  Flowshop and Jobshop Schedules: Complexity and Approximation , 1978, Oper. Res..

[37]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks to Minimize Schedule Length , 1986, IEEE Transactions on Computers.

[38]  Han Hoogeveen,et al.  Non-Approximability Results for Scheduling Problems with Minsum Criteria , 1998, INFORMS J. Comput..

[39]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[40]  Ellis Horowitz,et al.  Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.

[41]  Klaus Jansen,et al.  Approximation Algorithms for Scheduling Parallel Jobs , 2010, SIAM J. Comput..

[42]  Klaus Jansen,et al.  Computing optimal preemptive schedules for parallel tasks: linear programming approaches , 2003, Math. Program..

[43]  Han Hoogeveen,et al.  Short Shop Schedules , 1997, Oper. Res..