Capacity achieving LDPC codes through puncturing

The performance of punctured LDPC codes under maximum-likelihood (ML) decoding is studied in this paper via deriving and analyzing their average weight distributions (AWDs) and the corresponding asymptotic growth rate of the AWDs. In particular, we prove that capacity-achieving codes of any rate and for any memoryless binary-input output-symmetric (MBIOS) channel under ML decoding can be constructed by puncturing some original LDPC codes with small enough rate. Moreover, we prove that the gap to capacity of all the punctured codes can he the same as the original codes with a small enough rate. Conditions under which puncturing results in no rate loss with asymptotically high probability are also given in the process. These results show high potential for puncturing to be used in designing capacity-achieving codes, and also be used in rate-compatible coding under any MBIOS channel.

[1]  Shlomo Shamai,et al.  Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.

[2]  Marc P. C. Fossorier,et al.  Belief-propagation with information correction: improved near maximum-likelihood decoding of low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.

[6]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[7]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[8]  Achilleas Anastasopoulos,et al.  Asymptotic weight distributions of irregular repeat-accumulate codes , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[9]  Achilleas Anastasopoulos,et al.  Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels , 2005, ArXiv.

[10]  Oliver Pretzel Error-Correcting Codes and Finite Fields , 1992 .

[11]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[12]  Amin Shokrollahi,et al.  New Sequences of Linear Time Erasure Codes Approaching the Channel Capacity , 1999, AAECC.

[13]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[14]  Gregory Poltyrev,et al.  Bounds on the decoding error probability of binary linear codes via their spectra , 1994, IEEE Trans. Inf. Theory.

[15]  Steven W. McLaughlin,et al.  Rate-compatible puncturing of low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[16]  Faramarz Fekri,et al.  Results on punctured LDPC codes , 2004, Information Theory Workshop.

[17]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[18]  Meir Feder,et al.  Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.

[19]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[20]  Alexander Barg,et al.  Error exponents of expander codes , 2002, IEEE Trans. Inf. Theory.

[21]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[22]  Emina Soljanin,et al.  Reliable channel regions for good binary codes transmitted over parallel channels , 2006, IEEE Transactions on Information Theory.

[23]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[24]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.