Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients
暂无分享,去创建一个
[1] Mark Ainsworth,et al. A framework for obtaining guaranteed error bounds for finite element approximations , 2010, J. Comput. Appl. Math..
[2] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[3] Carsten Carstensen,et al. Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..
[4] Patrick Ciarlet,et al. Mesh requirements for the finite element approximation of problems with sign-changing coefficients , 2018, Numerische Mathematik.
[5] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[6] Andreas Veeser,et al. Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..
[7] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[8] Ricardo H. Nochetto,et al. Convergence Rates of AFEM with H−1 Data , 2012, Found. Comput. Math..
[9] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[10] Martin Vohralík,et al. Robust a posteriori error control for transmission problems with sign-changing coefficients using localization of dual norms , 2015 .
[11] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[12] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[13] Andreas Veeser,et al. Poincaré constants for finite element stars , 2012 .
[14] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[15] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[16] Manil Suri,et al. A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .
[17] Philippe Destuynder,et al. Explicit error bounds for a nonconforming finite element method , 1998 .
[18] Martin Vohralík,et al. Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..
[19] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[20] Daniela Capatina,et al. Local Flux Reconstructions for Standard Finite Element Methods on Triangular Meshes , 2016, SIAM J. Numer. Anal..
[21] Eric T. Chung,et al. A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..
[22] Susanne C. Brenner,et al. Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..
[23] M. Vohralík. On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .
[24] Serge Nicaise,et al. A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..
[25] Andreas Veeser,et al. Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..
[26] K. Ramdani,et al. Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .
[27] Lucas Chesnel,et al. T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .
[28] Lucas Chesnel,et al. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.
[29] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[30] Martin Vohralík,et al. Localization of the W-1,q norm for local a posteriori efficiency , 2020, IMA Journal of Numerical Analysis.
[31] R. Hoppe,et al. A review of unified a posteriori finite element error control , 2012 .
[32] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[33] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[34] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[35] R. Verfürth,et al. A Posteriori Error Estimates for Non-linear Parabolic Equations , 1994 .
[36] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[37] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[38] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[39] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[40] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[41] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[42] A. Sihvola,et al. Surface modes of negative-parameter interfaces and the importance of rounding sharp corners , 2008 .
[43] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[44] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[45] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[46] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[47] E. Süli,et al. Adaptive Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology , 2015, 1503.05378.
[48] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[49] A. Ern,et al. Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .
[50] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[51] Martin Vohralík,et al. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.
[52] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[53] Martin Vohralík. Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..
[54] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..