Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients

We present a posteriori error analysis of diffusion problems where the diffusion tensor is not necessarily symmetric and positive definite and can in particular change its sign. We first identify the correct intrinsic error norm for such problems, covering both conforming and nonconforming approximations. It combines a dual (residual) norm together with the distance to the correct functional space. Importantly, we show the equivalence of both these quantities defined globally over the entire computational domain with the Hilbertian sums of their localizations over patches of elements. In this framework, we then design a posteriori estimators which deliver simultaneously guaranteed error upper bound, global and local error lower bounds, and robustness with respect to the (sign-changing) diffusion tensor. Robustness with respect to the approximation polynomial degree is achieved as well. The estimators are given in a unified setting covering at once conforming, nonconforming, mixed, and discontinuous Galerkin finite element discretizations in two or three space dimensions. Numerical results illustrate the theoretical developments.

[1]  Mark Ainsworth,et al.  A framework for obtaining guaranteed error bounds for finite element approximations , 2010, J. Comput. Appl. Math..

[2]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[3]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[4]  Patrick Ciarlet,et al.  Mesh requirements for the finite element approximation of problems with sign-changing coefficients , 2018, Numerische Mathematik.

[5]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[6]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[7]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[8]  Ricardo H. Nochetto,et al.  Convergence Rates of AFEM with H−1 Data , 2012, Found. Comput. Math..

[9]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[10]  Martin Vohralík,et al.  Robust a posteriori error control for transmission problems with sign-changing coefficients using localization of dual norms , 2015 .

[11]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[12]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[13]  Andreas Veeser,et al.  Poincaré constants for finite element stars , 2012 .

[14]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[15]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[16]  Manil Suri,et al.  A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .

[17]  Philippe Destuynder,et al.  Explicit error bounds for a nonconforming finite element method , 1998 .

[18]  Martin Vohralík,et al.  Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..

[19]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[20]  Daniela Capatina,et al.  Local Flux Reconstructions for Standard Finite Element Methods on Triangular Meshes , 2016, SIAM J. Numer. Anal..

[21]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[22]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[23]  M. Vohralík On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .

[24]  Serge Nicaise,et al.  A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..

[25]  Andreas Veeser,et al.  Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..

[26]  K. Ramdani,et al.  Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .

[27]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[28]  Lucas Chesnel,et al.  T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.

[29]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[30]  Martin Vohralík,et al.  Localization of the W-1,q norm for local a posteriori efficiency , 2020, IMA Journal of Numerical Analysis.

[31]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[32]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[33]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[34]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[35]  R. Verfürth,et al.  A Posteriori Error Estimates for Non-linear Parabolic Equations , 1994 .

[36]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[37]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[38]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[39]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[40]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[41]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[42]  A. Sihvola,et al.  Surface modes of negative-parameter interfaces and the importance of rounding sharp corners , 2008 .

[43]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[44]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[45]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[46]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[47]  E. Süli,et al.  Adaptive Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology , 2015, 1503.05378.

[48]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[49]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[50]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[51]  Martin Vohralík,et al.  Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework , 2018, Numerische Mathematik.

[52]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[53]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..

[54]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..