Adaptive output feedback control of nonlinear systems using neural networks

An adaptive output feedback controller design procedure for uncertain nonlinear systems is developed which avoids the use of state estimation. To achieve this goal three separate problems are addressed independently: controller design, derivation of parameter update laws and approximate mapping of an unknown dynamic function from its input/output history. To handle the uncertainty, the controller, in the form of a dynamic compensator, is augmented by a single hidden layer (SHL) neural network that adjusts online for unknown nonlinearities. The parameter update laws for a SHL neural network are derived from stability analysis. Simulations illustrate the theoretical results.

[1]  H. Khalil Adaptive output feedback control of nonlinear systems represented by input-output models , 1996, IEEE Trans. Autom. Control..

[2]  A. Isidori Nonlinear Control Systems , 1985 .

[3]  Anthony J. Calise,et al.  Nonlinear adaptive flight control using neural networks , 1998 .

[4]  P. Kokotovic,et al.  Nonlinear control via approximate input-output linearization: the ball and beam example , 1992 .

[5]  Kevin A. Wise,et al.  Stability and flying qualities robustness of a dynamic inversion aircraft control law , 1996 .

[6]  Chen-Chung Liu,et al.  Adaptively controlling nonlinear continuous-time systems using multilayer neural networks , 1994, IEEE Trans. Autom. Control..

[7]  Anthony J. Calise,et al.  Adaptive output feedback control of a class of non-linear systems using neural networks , 2001 .

[8]  Anthony J. Calise,et al.  Adaptive nonlinear control of agile antiair missiles using neural networks , 2000, IEEE Trans. Control. Syst. Technol..

[9]  Nader Sadegh A nodal link perceptron network with applications to control of a nonholonomic system , 1995, IEEE Trans. Neural Networks.

[10]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[11]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[12]  M. Jankovic Adaptive nonlinear output feedback tracking with a partial high-gain observer and backstepping , 1997, IEEE Trans. Autom. Control..

[13]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[14]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[15]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.

[16]  Anthony J. Calise,et al.  Adaptive output feedback control of nonlinear systems using neural networks , 2001, Autom..

[17]  Don R. Hush,et al.  Efficient algorithms for function approximation with piecewise linear sigmoidal networks , 1998, IEEE Trans. Neural Networks.

[18]  Frank L. Lewis,et al.  High-Level Feedback Control with Neural Networks , 1998, World Scientific Series in Robotics and Intelligent Systems.

[19]  Thomas Kailath,et al.  Linear Systems , 1980 .

[20]  Anil V. Rao,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[21]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[22]  A. Krener Approximate linearization by state feedback and coordinate change , 1984 .

[23]  Anthony J. Calise,et al.  Dynamic neural networks for output feedback control , 2001 .

[24]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[25]  Patrizio Tomei,et al.  Nonlinear observer and output feedback attitude control of spacecraft , 1992 .