NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b

An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We re-examine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well-fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.

[1]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[2]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[3]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[4]  Drake Deming,et al.  Spitzer/MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS , 2012, 1202.1562.

[5]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[6]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[7]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[8]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[9]  Christopher J. Campo,et al.  TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM , 2012, 1207.4245.

[10]  D. Catling,et al.  AN ANALYTIC RADIATIVE–CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES , 2012, 1209.1833.

[11]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[12]  M. Line,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. III. DIAGNOSING CHEMICAL DISEQUILIBRIUM IN PLANETARY ATMOSPHERES , 2013, 1309.6679.

[13]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[14]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[15]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[16]  R. Akeson,et al.  The Mid-Infrared Spectrum of the Transiting Exoplanet HD 209458b , 2007, astro-ph/0702593.

[17]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[18]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[19]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[20]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[21]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[22]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[23]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[24]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[25]  Heidelberg,et al.  WASP-8b: CHARACTERIZATION OF A COOL AND ECCENTRIC EXOPLANET WITH SPITZER , 2013, 1303.5468.

[26]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[27]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[28]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[29]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[30]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.