Inexact Alternating Optimization for Phase Retrieval in the Presence of Outliers

Phase retrieval has been mainly considered in the presence of Gaussian noise. However, the performance of the algorithms proposed under the Gaussian noise model severely degrades when grossly corrupted data, i.e., outliers, exist. This paper investigates techniques for phase retrieval in the presence of heavy-tailed noise, which is considered a better model for situations where outliers exist. An <inline-formula><tex-math notation="LaTeX">$\ell _p$ </tex-math></inline-formula>-norm (<inline-formula><tex-math notation="LaTeX">$0<p<2$</tex-math></inline-formula> ) based estimator is proposed for fending against such noise, and two-block inexact alternating optimization is proposed as the algorithmic framework to tackle the resulting optimization problem. Two specific algorithms are devised by exploring different local approximations within this framework. Interestingly, the core conditional minimization steps can be interpreted as iteratively reweighted least squares and gradient descent. Convergence properties of the algorithms are discussed, and the Cramér–Rao bound (CRB) is derived. Simulations demonstrate that the proposed algorithms approach the CRB and outperform state-of-the-art algorithms in heavy-tailed noise.

[1]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[2]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[3]  Nikos D. Sidiropoulos,et al.  Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.

[4]  Nikos D. Sidiropoulos,et al.  Inexact alternating optimization for phase retrieval with outliers , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[5]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[6]  Gang Wang,et al.  Solving large-scale systems of random quadratic equations via stochastic truncated amplitude flow , 2016, 2017 25th European Signal Processing Conference (EUSIPCO).

[7]  Nikolaos D. Sidiropoulos,et al.  Putting nonnegative matrix factorization to the test: a tutorial derivation of pertinent cramer—rao bounds and performance benchmarking , 2014, IEEE Signal Processing Magazine.

[8]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[9]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[10]  Shiqian Ma,et al.  Joint Power and Admission Control: Non-Convex $L_{q}$ Approximation and An Effective Polynomial Time Deflation Approach , 2013, IEEE Transactions on Signal Processing.

[11]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Alfred O. Hero,et al.  Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..

[13]  Alexandre d'Aspremont,et al.  Phase retrieval for imaging problems , 2013, Mathematical Programming Computation.

[14]  Jeffrey A. Fessler,et al.  Undersampled Phase Retrieval With Outliers , 2014, IEEE Transactions on Computational Imaging.

[15]  Yoram Bresler,et al.  The stability of nonlinear least squares problems and the Cramer-Rao bound , 2000, IEEE Trans. Signal Process..

[16]  Prabhu Babu,et al.  Optimization Methods for Designing Sequences With Low Autocorrelation Sidelobes , 2014, IEEE Transactions on Signal Processing.

[17]  Peter Richtárik,et al.  Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..

[18]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[19]  Radu Balan,et al.  The fisher information matrix and the CRLB in a non-AWGN model for the phase retrieval problem , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[20]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[21]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[22]  Nikos D. Sidiropoulos,et al.  Feasible Point Pursuit and Successive Approximation of Non-Convex QCQPs , 2014, IEEE Signal Processing Letters.

[23]  Nikos D. Sidiropoulos,et al.  Phase Retrieval Using Feasible Point Pursuit: Algorithms and Cramér–Rao Bound , 2015, IEEE Transactions on Signal Processing.

[24]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[25]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[26]  Bo Yang,et al.  Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering , 2016, IEEE Transactions on Signal Processing.

[27]  Jeffrey A. Fessler,et al.  Phase retrieval of sparse signals using optimization transfer and ADMM , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[28]  Paul Hand,et al.  PhaseLift is robust to a constant fraction of arbitrary errors , 2015, 1502.04241.

[29]  Lei Huang,et al.  $\ell _{p}$-MUSIC: Robust Direction-of-Arrival Estimator for Impulsive Noise Environments , 2013, IEEE Transactions on Signal Processing.

[30]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[31]  Gang Wang,et al.  Solving Random Systems of Quadratic Equations via Truncated Generalized Gradient Flow , 2016, NIPS.

[32]  Iuri Frosio,et al.  Statistical Based Impulsive Noise Removal in Digital Radiography , 2009, IEEE Transactions on Medical Imaging.

[33]  Kejun Huang,et al.  Phase Retrieval Using Feasible Point Pursuit , 2015 .

[34]  H. V. Trees,et al.  Exploring Estimator BiasVariance Tradeoffs Using the Uniform CR Bound , 2007 .

[35]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[36]  Ke Wei Phase retrieval via Kaczmarz methods , 2015, 1502.01822.

[37]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[38]  Prabhu Babu,et al.  PRIME: Phase Retrieval via Majorization-Minimization , 2015, IEEE Transactions on Signal Processing.

[39]  Radu Balan,et al.  Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case , 2012, Found. Comput. Math..

[40]  Wotao Yin,et al.  Parallel matrix factorization for low-rank tensor completion , 2013, ArXiv.

[41]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[42]  Juliane Sigl,et al.  Nonlinear residual minimization by iteratively reweighted least squares , 2015, Computational Optimization and Applications.

[43]  Nikos D. Sidiropoulos,et al.  Least squares phase retrieval using feasible point pursuit , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[45]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[46]  Yingbin Liang,et al.  Provable Non-convex Phase Retrieval with Outliers: Median TruncatedWirtinger Flow , 2016, ICML.

[47]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[48]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[49]  Shiqian Ma,et al.  A smoothing SQP framework for a class of composite Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{documen , 2014, Mathematical Programming.

[50]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[51]  C. C. Wackerman,et al.  Phase-retrieval error: a lower bound , 1987 .

[52]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[53]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[54]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[55]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[56]  Nikos D. Sidiropoulos,et al.  Joint Tensor Factorization and Outlying Slab Suppression With Applications , 2015, IEEE Transactions on Signal Processing.

[57]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.