Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2

The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-I) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being ±25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3–4 cm RMS, a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed, geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.

[1]  B. Chao,et al.  Global gravitational changes due to atmospheric mass redistribution as observed by the Lageos nodal residual , 1995 .

[2]  Chester J. Koblinsky,et al.  A preliminary evaluation of ocean topography from the TOPEX/POSEIDON mission , 1994 .

[3]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[4]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[5]  Hyung-Jin Rim,et al.  Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON , 1994 .

[6]  Thomas P. Yunck,et al.  The GPS flight experiment on TOPEX/POSEIDON , 1994 .

[7]  E. J. Christensen,et al.  Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system , 1994 .

[8]  T. Herring,et al.  Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth , 1994 .

[9]  Pascal Willis,et al.  First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon , 1994 .

[10]  R. Nerem,et al.  Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite , 1994 .

[11]  N. K. Pavlis,et al.  A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3 , 1994 .

[12]  Erricos C. Pavlis,et al.  Improvements in the Accuracy of Goddard Earth Models (GEM) , 2013 .

[13]  M. Watkins,et al.  Long term changes in the Earth's shape, rotation, and geocenter , 1993 .

[14]  A. Cazenave,et al.  Temporal Variations of the Earth Gravity Field For 1985–1989 Derived From Lageos , 1993 .

[15]  N. K. Pavlis,et al.  Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .

[16]  A. A. Day,et al.  D'Entrecasteaux, 1792: Celebrating a bicentennial in geomagnetism , 1993 .

[17]  R. S. Nerem,et al.  Expected orbit determination performance for the TOPEX/Poseidon mission , 1993, IEEE Trans. Geosci. Remote. Sens..

[18]  R. Gross The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model , 1993 .

[19]  New error calibration tests for gravity models using subset solutions and independent data: Applied to GEM‐T3 , 1993 .

[20]  D. Bolvin,et al.  Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit , 1993 .

[21]  S. Luthcke,et al.  Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination , 1992 .

[22]  John C. Ries,et al.  Absolute positioning using Doris tracking of the SPOT‐2 satellite , 1992 .

[23]  Dennis D. McCarthy,et al.  IERS Standards (1992). , 1992 .

[24]  S. Luthcke,et al.  Erratum-Modeling Radiation Forces Acting on Topex/Poseidon for Precision Orbit Determination , 1992 .

[25]  C. Boucher,et al.  Positioning results with doris on SPOT2 after first year of mission , 1992 .

[26]  Robert M. Chervin,et al.  Ocean general circulation from a global eddy‐resolving model , 1992 .

[27]  John C. Ries,et al.  Progress in the determination of the gravitational coefficient of the Earth , 1992 .

[28]  M. Cheng,et al.  Tidal deceleration of the Moon's mean motion , 1992 .

[29]  George W. Rosborough,et al.  Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft , 1992 .

[30]  Richard H. Rapp,et al.  The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models , 1991 .

[31]  John C. Ries,et al.  Orbit determination in the relativistic geocentric reference frame , 1991 .

[32]  James E. Campbell,et al.  Ocean tide effects in universal time detected by VLBI , 1991 .

[33]  B. Chao,et al.  Temporal variation of the Earth's low‐degree zonal gravitational field caused by atmospheric mass redistribution: 1980–1988 , 1991 .

[34]  D. Yuan The determination and error assessment of the Earth's gravity field model , 1991 .

[35]  Richard H. Rapp,et al.  The development and analysis of geopotential coefficient models to spherical harmonic degree 360 , 1990 .

[36]  David E. Smith,et al.  Tectonic motion and deformation from satellite laser ranging to LAGEOS , 1990 .

[37]  Richard H. Rapp,et al.  Geodetic and oceanographic results from the analysis of 1 year of Geosat data , 1990 .

[38]  Francis J. Lerch,et al.  Dynamic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of Seasat altimeter data , 1990 .

[39]  M. Watkins,et al.  Relativistic effects for near-earth satellite orbit determination , 1990, Celestial Mechanics and Dynamical Astronomy.

[40]  Improved mean sea surface estimation by gravity field error covariance weighting , 1990 .

[41]  Byron D. Tapley,et al.  Determination of the ocean circulation using Geosat altimetry , 1990 .

[42]  Richard H. Rapp,et al.  The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling , 1990 .

[43]  B. Heck An evaluation of some systematic error sources affecting terrestrial gravity anomalies , 1990 .

[44]  An Improved Model for the Earth’s Gravity Field , 1990 .

[45]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[46]  Francis J. Lerch,et al.  Optimum data weighting and error calibration for estimation of gravitational parameters , 1989 .

[47]  E. C. Pavlis,et al.  An improved error assessment for the GEM-T1 gravitational model , 1989 .

[48]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[49]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[50]  John C. Ries,et al.  Circulation from a joint gravity field solution determination of the general ocean , 1988 .

[51]  Effect of general relativity on a near-Earth satellite in the geocentric and barycentric reference frames. , 1988, Physical review letters.

[52]  E. C. Pavlis,et al.  A new gravitational model for the earth from satellite tracking data - GEM-T1 , 1988 .

[53]  David E. Smith,et al.  Observed tidal braking in the earth/moon/sun system , 1988 .

[54]  Modeling and estimation of a low degree geopotential model from terrestrial gravity data , 1988 .

[55]  B. T. Truong,et al.  DORIS - A precise satellite-positioning Doppler system , 1988 .

[56]  B. Tapley,et al.  Earth radiation pressure effects on satellites , 1988 .

[57]  G. Rosborough Satellite orbit perturbations due to the geopotential , 1986 .

[58]  Francis J. Lerch,et al.  On the accuracy of recent Goddard gravity models , 1985 .

[59]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[60]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[61]  Francis J. Lerch,et al.  A refined gravity model from Lageos /GEM-L2/ , 1982 .

[62]  C. Reigber Representation of orbital element variations and force function with respect to various reference systems , 1981 .

[63]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[64]  John M. Wahr,et al.  The forced nutations of an elliptical, rotating, elastic and oceanless earth , 1981 .

[65]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[66]  L. Sjöberg A recurrence relation for the βn-function , 1980 .

[67]  Francis J. Lerch,et al.  Gravity model improvement using GEOS 3 /GEM 9 and 10/. [and Seasat altimetry data] , 1977 .

[68]  P. Mcclure Diurnal polar motion , 1973 .

[69]  K. Lambeck Polar Motion from the Tracking of Close Earth Satellites , 1972 .

[70]  W. M. Kaula Theory of satellite geodesy , 1966 .