DC diode sputtering of titanium: determination of optimal deposition conditions by electrical and spectroscopic investigations

An argon DC glow discharge in a diode sputtering system fitted with a titanium cathode is investigated. The first results fix the boundaries of good working conditions for the discharge; mathematical relations are established for the pressure range 40-120 mTorr, anode-cathode lengths from 15 to 60 mm and current densities from 0.6 to 2 mA cm-2. The deposition rate is found to be proportional to the electrical power if the product pd is kept constant, but the ratio of the deposition rate to discharge power exhibits a maximum for d approximately=1.5 le. Spectroscopic studies of the discharge close to the substrate surface show that the intensity of some arc and spark lines of titanium is also proportional to the deposition rate. Emission spectroscopy shows that hydrogen is produced and quickly pumped during the presputtering stage; its evacuation is necessary to obtain good metallic films.

[1]  S. Ingrey,et al.  Effect of pressure on the properties of reactively sputtered Ta2O5 , 1974 .

[2]  D. E. Meyer Residual gas analysis studies during sputtering of reactive metals , 1974 .

[3]  J. Greene,et al.  Glow Discharge Optical Spectroscopy for Monitoring Sputter Deposited Film Thickness , 1973 .

[4]  W. Westwood,et al.  Analysis of sputtering discharge by optical and mass spectrometry. I. Platinum and tantalum sputtered in argon , 1973 .

[5]  J. M. Whelan,et al.  Glow‐discharge optical spectroscopy for the analysis of thin films , 1973 .

[6]  J. Müller,et al.  The gettering action of evaporated films of titanium and erbium , 1972 .

[7]  W. Westwood,et al.  Cathode Dark‐Space Measurements and Deposition Rates of Tantalum in a Sputtering System , 1972 .

[8]  M. Hecq,et al.  Aspects chimiques de la formation de films d'oxydes d'etain par pulverisation reactive , 1972 .

[9]  J. Reichardt The Kinetics of the Hydrogen–Titanium Reaction , 1972 .

[10]  P. Boumans Sputtering in a glow discharge for spectrochemical analysis , 1972 .

[11]  H. Caswell,et al.  Role of Hydrogen in the Sputtering of Nickel–Chromium Films , 1967 .

[12]  E. Kay,et al.  Method for Studying Sputtered Particles by Emission Spectroscopy , 1966 .

[13]  W. Kreye Low‐Energy Sputtering Yields by Resonance Absorption and Emission Spectroscopic Methods , 1964 .

[14]  R. L. Jepsen,et al.  Enhanced Hydrogen Pumping with Sputter‐Ion Pumps , 1961 .

[15]  H. Betz,et al.  Vergleich der Kathodenzerstäubung reiner und oxydbedeckter Magnesiumoberflächen , 1937 .

[16]  A. Güntherschulze Der Kathodenfall der Glimmentladung in Abhängigkeit von der Stromdichte bei Spannungen bis 3000 Volt , 1930 .

[17]  F. W. Aston,et al.  On the relation between current, voltage, pressure, and the length of the dark space in different gases , 1912 .