Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm

This paper proposes a novel method of training the parameters of adaptive-network-based fuzzy inference system (ANFIS). Different from the previous works which emphasized on gradient descent (GD) method, we present an approach to train the parameters of ANFIS by using an improved version of quantum-behaved particle swarm optimization (QPSO). This novel variant of QPSO employs an adaptive dynamical controlling method for the contraction-expansion (CE) coefficient which is the most influential algorithmic parameter for the performance of the QPSO algorithm. The ANFIS trained by the proposed QPSO with adaptive dynamical CE coefficient (QPSO-ADCEC) is applied to five example systems. The simulation results show that the ANFIS-QPSO-ADCEC method performs much better than the original ANFIS, ANFIS-PSO, and ANFIS-QPSO methods.

[1]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[2]  Wenbo Xu,et al.  A Quantum-Behaved Particle Swarm Optimization With Diversity-Guided Mutation for the Design of Two-Dimensional IIR Digital Filters , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Xiaojun Wu,et al.  A Review of Quantum-behaved Particle Swarm Optimization , 2010 .

[4]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  Frank Hoffmann,et al.  Incremental Evolutionary Design of TSK Fuzzy Controllers , 2007, IEEE Transactions on Fuzzy Systems.

[6]  Xiaojun Wu,et al.  Multiple sequence alignment using the Hidden Markov Model trained by an improved quantum-behaved particle swarm optimization , 2012, Inf. Sci..

[7]  Amitava Chatterjee,et al.  A Hybrid Approach for Design of Stable Adaptive Fuzzy Controllers Employing Lyapunov Theory and Particle Swarm Optimization , 2009, IEEE Transactions on Fuzzy Systems.

[8]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[9]  Xiaojun Wu,et al.  QoS multicast routing using a quantum-behaved particle swarm optimization algorithm , 2011, Eng. Appl. Artif. Intell..

[10]  Xiaojun Wu,et al.  Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection , 2012, Evolutionary Computation.

[11]  A. M. El-Zonkoly,et al.  Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization , 2009, Expert Syst. Appl..

[12]  Wenbo Xu,et al.  Adaptive parameter control for quantum-behaved particle swarm optimization on individual level , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[13]  R. Scott Crowder,et al.  Predicting the Mackey-Glass Timeseries With Cascade-Correlation Learning , 1990 .

[14]  A. Lapedes,et al.  Nonlinear Signal Processing Using Neural Networks , 1987 .

[15]  Jun Sun,et al.  A global search strategy of quantum-behaved particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[16]  Xiaojun Wu,et al.  Convergence analysis and improvements of quantum-behaved particle swarm optimization , 2012, Inf. Sci..

[17]  P. S. Lewis,et al.  Function approximation and time series prediction with neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[18]  Terence D. Sanger,et al.  A tree-structured adaptive network for function approximation in high-dimensional spaces , 1991, IEEE Trans. Neural Networks.

[19]  Jing Liu,et al.  Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems , 2007, Int. J. Comput. Math..

[20]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[21]  Leandro dos Santos Coelho,et al.  Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system , 2008, Appl. Soft Comput..

[22]  Jing Liu,et al.  Quantum-behaved particle swarm optimization with mutation operator , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[23]  Liu Li Fuzzy Identification Based on Improved T-S Fuzzy Model and Its Application for Thermal Process , 2007 .

[24]  Xiaojun Wu,et al.  Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point , 2011, Appl. Math. Comput..

[25]  Chia-Feng Juang,et al.  A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms , 2002, IEEE Trans. Fuzzy Syst..

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[28]  John E. Moody,et al.  Fast Learning in Multi-Resolution Hierarchies , 1988, NIPS.

[29]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[30]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[31]  Wei Chen,et al.  Gene expression data analysis with the clustering method based on an improved quantum-behaved Particle Swarm Optimization , 2012, Eng. Appl. Artif. Intell..

[32]  Eghbal G. Mansoori,et al.  SGERD: A Steady-State Genetic Algorithm for Extracting Fuzzy Classification Rules From Data , 2008, IEEE Transactions on Fuzzy Systems.

[33]  Wenbo Xu,et al.  Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method , 2009 .