Higher-order total variation approaches and generalisations

Over the last decades, the total variation (TV) evolved to one of the most broadly-used regularisation functionals for inverse problems, in particular for imaging applications. When first introduced as a regulariser, higher-order generalisations of TV were soon proposed and studied with increasing interest, which led to a variety of different approaches being available today. We review several of these approaches, discussing aspects ranging from functional-analytic foundations to regularisation theory for linear inverse problems in Banach space, and provide a unified framework concerning well-posedness and convergence for vanishing noise level for respective Tikhonov regularisation. This includes general higher orders of TV, additive and infimal-convolution multi-order total variation, total generalised variation (TGV), and beyond. Further, numerical optimisation algorithms are developed and discussed that are suitable for solving the Tikhonov minimisation problem for all presented models. Focus is laid in particular on covering the whole pipeline starting at the discretisation of the problem and ending at concrete, implementable iterative procedures. A major part of this review is finally concerned with presenting examples and applications where higher-order TV approaches turned out to be beneficial. These applications range from classical inverse problems in imaging such as denoising, deconvolution, compressed sensing, optical-flow estimation and decompression, to image reconstruction in medical imaging and beyond, including magnetic resonance imaging (MRI), computed tomography (CT), magnetic-resonance positron emission tomography (MR-PET), and electron tomography.

[1]  A. Chambolle Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1 , 2001 .

[2]  A. Zygmund,et al.  On the existence of certain singular integrals , 1952 .

[3]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[4]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[5]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[6]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[7]  G. Bouchitté,et al.  The calibration method for the Mumford-Shah functional and free-discontinuity problems , 2001, math/0105013.

[8]  Karl Kunisch,et al.  On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction , 2014, SIAM J. Imaging Sci..

[9]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[10]  Michael Möller,et al.  Collaborative Total Variation: A General Framework for Vectorial TV Models , 2015, SIAM J. Imaging Sci..

[11]  Miroslav Bacák,et al.  Computing Medians and Means in Hadamard Spaces , 2012, SIAM J. Optim..

[12]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[13]  Jean-Michel Morel,et al.  Secrets of image denoising cuisine* , 2012, Acta Numerica.

[14]  D. O. Walsh,et al.  Adaptive reconstruction of phased array MR imagery , 2000, Magnetic resonance in medicine.

[15]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[16]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[17]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[18]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[19]  P. Cockshott,et al.  Electron tomography based on a Total Generalized Variation minimization reconstruction technique , 2015 .

[20]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[21]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[22]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[23]  M. Reiser,et al.  Material differentiation by dual energy CT: initial experience , 2007, European Radiology.

[24]  Daniel K Sodickson,et al.  Joint MR-PET reconstruction using vector valued Total Generalized Variation , 2014 .

[25]  Yoshua Bengio,et al.  High quality document image compression with "DjVu" , 1998, J. Electronic Imaging.

[26]  Lawrence L. Wald,et al.  Fast quantitative susceptibility mapping with L1‐regularization and automatic parameter selection , 2013, Magnetic resonance in medicine.

[27]  W. Miller,et al.  Schild's Ladder Parallel Transport Procedure for an Arbitrary Connection , 2000 .

[28]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[29]  Sifen Zhong,et al.  Image coding with optimal reconstruction , 1997, Proceedings of International Conference on Image Processing.

[30]  M. Zaitsev,et al.  Motion artifacts in MRI: A complex problem with many partial solutions , 2015, Journal of magnetic resonance imaging : JMRI.

[31]  Ferdinand Schweser,et al.  Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). , 2016, Zeitschrift fur medizinische Physik.

[32]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[33]  D. Cory,et al.  Measurement of translational displacement probabilities by NMR: An indicator of compartmentation , 1990, Magnetic resonance in medicine.

[34]  Rainer Raupach,et al.  Erratum: First performance evaluation of a dual-source CT (DSCT) system (European Radiology (2006) vol. 16 (2) (256-268) 10.1007/ s00330-005-2919-2) , 2006 .

[35]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[36]  José A. Iglesias,et al.  A note on convergence of solutions of total variation regularized linear inverse problems , 2017, 1711.06495.

[37]  Jonathan M. Borwein,et al.  Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..

[38]  Carola-Bibiane Schönlieb,et al.  Bilevel approaches for learning of variational imaging models , 2015, ArXiv.

[39]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[41]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[42]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[43]  Christoph Brune,et al.  EM-TV Methods for Inverse Problems with Poisson Noise , 2013 .

[44]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[45]  B. Yeh,et al.  Dual-energy computed tomography in pulmonary embolism. , 2010, The British journal of radiology.

[46]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[47]  K. Kunisch,et al.  Properties of L1-TGV2: The one-dimensional case , 2013 .

[48]  Kristian Bredies,et al.  Preconditioned Douglas-Rachford Splitting Methods for Convex-concave Saddle-point Problems , 2015, SIAM J. Numer. Anal..

[49]  José P. Marques,et al.  An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping , 2016, NMR in biomedicine.

[50]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[51]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[52]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[53]  Suyash P. Awate,et al.  Temporally constrained reconstruction of dynamic cardiac perfusion MRI , 2007, Magnetic resonance in medicine.

[54]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[55]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[56]  Michael Unser,et al.  Hessian Schatten-Norm Regularization for Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[57]  Stephen L. Keeling,et al.  Medical Image Registration and Interpolation by Optical Flow with Maximal Rigidity , 2005, Journal of Mathematical Imaging and Vision.

[58]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[59]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[60]  Bryan M. Williams,et al.  A new image deconvolution method with fractional regularisation , 2016 .

[61]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[62]  Jacques Froment,et al.  Adapted Total Variation for Artifact Free Decompression of JPEG Images , 2005, Journal of Mathematical Imaging and Vision.

[63]  Carola-Bibiane Schönlieb,et al.  Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models , 2015, Journal of Mathematical Imaging and Vision.

[64]  Philipp Grohs,et al.  Total variation regularization on Riemannian manifolds by iteratively reweighted minimization , 2016 .

[65]  Horst Bischof,et al.  Pushing the limits of stereo using variational stereo estimation , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[66]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[67]  Ferdinand Schweser,et al.  Overview of quantitative susceptibility mapping , 2017, NMR in biomedicine.

[68]  S. Setzer,et al.  Infimal convolution regularizations with discrete ℓ1-type functionals , 2011 .

[69]  K. Bredies,et al.  A perfect reconstruction property for PDE-constrained total-variation minimization with application in Quantitative Susceptibility Mapping , 2019, ESAIM: Control, Optimisation and Calculus of Variations.

[70]  Kristian Bredies,et al.  A Total Variation-Based JPEG Decompression Model , 2012, SIAM J. Imaging Sci..

[71]  Gabriele Steidl,et al.  Priors with Coupled First and Second Order Differences for Manifold-Valued Image Processing , 2017, Journal of Mathematical Imaging and Vision.

[72]  H. C. Torrey Bloch Equations with Diffusion Terms , 1956 .

[73]  Kees Joost Batenburg,et al.  Electron tomography based on a total variation minimization reconstruction technique , 2012 .

[74]  I. M. Otivation Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems , 2018 .

[75]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[76]  Daniel Rueckert,et al.  Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[77]  Maïtine Bergounioux,et al.  Mathematical Analysis of a Inf-Convolution Model for Image Processing , 2016, J. Optim. Theory Appl..

[78]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[79]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[80]  Bangti Jin,et al.  Inverse Problems , 2014, Series on Applied Mathematics.

[81]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[82]  G. Steidl,et al.  Variational Methods with Higher–Order Derivatives in Image Processing , 2007 .

[83]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[84]  M. Hintermüller,et al.  A function space framework for structural total variation regularization with applications in inverse problems , 2017, 1710.01527.

[85]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[86]  Pawel Markiewicz,et al.  PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets , 2016, IEEE Transactions on Medical Imaging.

[87]  J. Duyn,et al.  Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data , 2009, Magnetic resonance in medicine.

[88]  Bastian Goldlücke,et al.  Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization , 2018, GCPR.

[89]  Kazufumi Ito,et al.  Optimal Control Formulation for Determining Optical Flow , 2002, SIAM J. Sci. Comput..

[90]  L. Evans Measure theory and fine properties of functions , 1992 .

[91]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[92]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[93]  Kristian Bredies,et al.  Accelerated Variational dynamic MRI reconstruction (AVIONIC) , 2016 .

[94]  Kristian Bredies,et al.  Total Generalized Variation for Manifold-Valued Data , 2017, SIAM J. Imaging Sci..

[95]  Gitta Kutyniok,et al.  Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting , 2017, Physics in medicine and biology.

[96]  Kristian Bredies,et al.  A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics , 2015, SIAM J. Imaging Sci..

[97]  Kristian Bredies,et al.  Joint MR-PET Reconstruction Using a Multi-Channel Image Regularizer , 2017, IEEE Transactions on Medical Imaging.

[98]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[99]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[100]  Kristian Bredies,et al.  Artifact-Free Variational MPEG Decompression , 2015, SSVM.

[101]  P. Gilbert Iterative methods for the three-dimensional reconstruction of an object from projections. , 1972, Journal of theoretical biology.

[102]  Andreas Weinmann,et al.  Total Variation Regularization for Manifold-Valued Data , 2013, SIAM J. Imaging Sci..

[103]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[104]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[105]  Daniel K Sodickson,et al.  Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components , 2015, Magnetic resonance in medicine.

[106]  Bradley J. Lucier,et al.  Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing , 2011, SIAM J. Numer. Anal..

[107]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[108]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[109]  Kristian Bredies,et al.  Preconditioned Douglas–Rachford Algorithms for TV- and TGV-Regularized Variational Imaging Problems , 2015, Journal of Mathematical Imaging and Vision.

[110]  Arman Rahmim,et al.  Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls. , 2013, Medical physics.

[111]  Martin Holler,et al.  Variational Decompression of Image Data From DjVu Encoded Files , 2018, IEEE Transactions on Image Processing.

[112]  Gabriele Steidl,et al.  Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images , 2017, SSVM.

[113]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[114]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[115]  Daniel Cremers,et al.  Total Cyclic Variation and Generalizations , 2013, Journal of Mathematical Imaging and Vision.

[116]  Otmar Scherzer,et al.  Models for Image Interpolation Based on the Optical Flow , 2001, Computing.

[117]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[118]  Yimei Zhu,et al.  Fast phase unwrapping algorithm for interferometric applications. , 2003, Optics letters.

[119]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[120]  Kristian Bredies,et al.  Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[121]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[122]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[123]  Pan Liu,et al.  One dimensional fractional order $TGV$: Gamma-convergence and bilevel training scheme , 2016, 1612.05142.

[124]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[125]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[126]  A. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004 .

[127]  K. Bredies,et al.  Regularization of linear inverse problems with total generalized variation , 2014 .

[128]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[129]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[130]  Michael Möller,et al.  Sublabel–Accurate Relaxation of Nonconvex Energies , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[131]  Kawin Setsompop,et al.  Single‐step quantitative susceptibility mapping with variational penalties , 2017, NMR in biomedicine.

[132]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[133]  K. T. Block,et al.  Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint , 2007, Magnetic resonance in medicine.

[134]  Thomas Pock,et al.  Learning a variational network for reconstruction of accelerated MRI data , 2017, Magnetic resonance in medicine.

[135]  Yiqiu Dong,et al.  Tomographic Reconstruction Methods for Decomposing Directional Components , 2017, ArXiv.

[136]  David Atkinson,et al.  Joint reconstruction of PET-MRI by exploiting structural similarity , 2014, Inverse Problems.

[137]  Dirk A. Lorenz,et al.  Image Sequence Interpolation Using Optimal Control , 2010, Journal of Mathematical Imaging and Vision.

[138]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[139]  Gilles Deslauriers,et al.  UNE FAMILLE D'ONDELETTES BIORTHOGONALES SUR L'INTERVALLE OBTENUE PAR UN SCH ´ EMA D'INTERPOLATION IT ´ ERATIVE , 1999 .

[140]  Andrew Markoe,et al.  Analytic Tomography: Index of Notations and Symbols , 2006 .

[141]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[142]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[143]  Rudolf Mester,et al.  Illumination-Robust Dense Optical Flow Using Census Signatures , 2011, DAGM-Symposium.

[144]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[145]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[146]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[147]  Fernando Boada,et al.  Evaluation of Parallel Level Sets and Bowsher’s Method as Segmentation-Free Anatomical Priors for Time-of-Flight PET Reconstruction , 2018, IEEE Transactions on Medical Imaging.

[148]  Kristian Bredies,et al.  TGV for diffusion tensors: A comparison of fidelity functions , 2013 .

[149]  Jonas Adler,et al.  EDS tomographic reconstruction regularized by total nuclear variation joined with HAADF-STEM tomography. , 2018, Ultramicroscopy.

[150]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[151]  A. Chambolle,et al.  Geometric properties of solutions to the total variation denoising problem , 2016, 1602.00087.

[152]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[153]  K. Bredies,et al.  Sparsity of solutions for variational inverse problems with finite-dimensional data , 2018, Calculus of Variations and Partial Differential Equations.

[154]  K. Bredies,et al.  Infimal convolution of total generalized variation functionals for dynamic MRI , 2017, Magnetic resonance in medicine.

[155]  Ferdinand Schweser,et al.  An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest , 2017, NMR in biomedicine.

[156]  Anthonin Reilhac,et al.  Evaluation of Three MRI-Based Anatomical Priors for Quantitative PET Brain Imaging , 2012, IEEE Transactions on Medical Imaging.

[157]  Horst Bischof,et al.  Minimizing TGV-Based Variational Models with Non-convex Data Terms , 2013, SSVM.

[158]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[159]  M. Bergounioux,et al.  A Second-Order Model for Image Denoising , 2010 .

[160]  Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands , 2008 .

[161]  Paul Strauss,et al.  Magnetic Resonance Imaging Physical Principles And Sequence Design , 2016 .

[162]  Kristian Bredies,et al.  A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers , 2017, Journal of Optimization Theory and Applications.

[163]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[164]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[165]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[166]  K. Bredies Symmetric tensor fields of bounded deformation , 2013 .

[167]  Massimo Fornasier An Introduction to Total Variation for Image Analysis , 2010 .

[168]  K. Stierstorfer,et al.  First performance evaluation of a dual-source CT (DSCT) system , 2006, European Radiology.

[169]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[170]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[171]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[172]  Kristian Bredies,et al.  Fast quantitative susceptibility mapping using 3D EPI and total generalized variation , 2015, NeuroImage.

[173]  Richard Huber,et al.  Coupled regularization with multiple data discrepancies , 2017, Inverse problems.

[174]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[175]  Willem Jan Palenstijn,et al.  Numerical methods for low-dose EDS tomography. , 2018, Ultramicroscopy.

[176]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[177]  Ke Chen,et al.  A Total Fractional-Order Variation Model for Image Restoration with Nonhomogeneous Boundary Conditions and Its Numerical Solution , 2015, SIAM J. Imaging Sci..

[178]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[179]  Carola-Bibiane Schönlieb,et al.  A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.

[180]  Li Feng,et al.  Highly accelerated real‐time cardiac cine MRI using k–t SPARSE‐SENSE , 2013, Magnetic resonance in medicine.

[181]  Yiming Gao,et al.  Infimal Convolution of Oscillation Total Generalized Variation for the Recovery of Images with Structured Texture , 2017, SIAM J. Imaging Sci..

[182]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. , 1996, Journal of magnetic resonance.

[183]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[184]  Kristian Bredies,et al.  A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics , 2015, SIAM J. Imaging Sci..

[185]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[186]  Kristian Bredies,et al.  Total generalized variation regularization for multi-modal electron tomography. , 2019, Nanoscale.

[187]  Antonin Chambolle,et al.  On Representer Theorems and Convex Regularization , 2018, SIAM J. Optim..