A Survey on Deep Learning Approaches to Medical Images and a Systematic Look up into Real-Time Object Detection

[1]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[2]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[3]  Yichen Wei,et al.  Relation Networks for Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  Nasir M. Rajpoot,et al.  Context-Aware Learning using Transferable Features for Classification of Breast Cancer Histology Images , 2018, ICIAR.

[7]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  K. Lehnertz,et al.  Seizure prediction — ready for a new era , 2018, Nature Reviews Neurology.

[10]  Wenyin Liu,et al.  Shared Multi-View Data Representation for Multi-Domain Event Detection , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Qichao Zhang,et al.  DeepSign: Deep Learning based Traffic Sign Recognition , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[12]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Angshul Majumdar,et al.  RODEO: Robust DE-aliasing autoencOder for real-time medical image reconstruction , 2017, Pattern Recognit..

[14]  Yuichiro Hayashi,et al.  Deep learning and its application to medical image segmentation , 2018, ArXiv.

[15]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Andreas Stolcke,et al.  The Microsoft 2017 Conversational Speech Recognition System , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[19]  Daniel L. Rubin,et al.  Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions , 2017, Journal of Digital Imaging.

[20]  Christopher Joseph Pal,et al.  Brain tumor segmentation with Deep Neural Networks , 2015, Medical Image Anal..

[21]  Erik Learned-Miller,et al.  FDDB: A benchmark for face detection in unconstrained settings , 2010 .

[22]  Zhipeng Jia,et al.  Constrained Deep Weak Supervision for Histopathology Image Segmentation , 2017, IEEE Transactions on Medical Imaging.

[23]  Hyunjin Park,et al.  Prospects of deep learning for medical imaging , 2018, Precision and Future Medicine.

[24]  Guang-Zhong Yang,et al.  Deep Learning for Health Informatics , 2017, IEEE Journal of Biomedical and Health Informatics.

[25]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[26]  Feng Li,et al.  Fully automated detection of retinal disorders by image-based deep learning , 2019, Graefe's Archive for Clinical and Experimental Ophthalmology.

[27]  Gustavo Carneiro,et al.  Deep Learning and Structured Prediction for the Segmentation of Mass in Mammograms , 2015, MICCAI.

[28]  Christopher Bowd,et al.  Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs , 2018, Scientific Reports.

[29]  Josien P. W. Pluim,et al.  Not‐so‐supervised: A survey of semi‐supervised, multi‐instance, and transfer learning in medical image analysis , 2018, Medical Image Anal..

[30]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[31]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[32]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[33]  Gustavo Carneiro,et al.  Deep structured learning for mass segmentation from mammograms , 2014, 2015 IEEE International Conference on Image Processing (ICIP).

[34]  Matthew T. Freedman,et al.  Artificial convolution neural network techniques and applications for lung nodule detection , 1995, IEEE Trans. Medical Imaging.

[35]  François Chollet,et al.  Keras: The Python Deep Learning library , 2018 .

[36]  Ronald M. Summers,et al.  Anatomy-specific classification of medical images using deep convolutional nets , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[37]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[38]  Bianca S. Gerendas,et al.  Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. , 2017, Ophthalmology.

[39]  Bastian Leibe,et al.  Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video , 2011, ICVS.

[40]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[41]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[42]  Yanqing Zhang,et al.  Early Diagnosis of Alzheimer ’ s Disease : A Neuroimaging Study with Deep Learning Architectures , 2018 .

[43]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Dinggang Shen,et al.  Deep Learning Based Imaging Data Completion for Improved Brain Disease Diagnosis , 2014, MICCAI.

[45]  Z. Jane Wang,et al.  A CNN Regression Approach for Real-Time 2D/3D Registration , 2016, IEEE Transactions on Medical Imaging.

[46]  Naeem Khalid Janjua,et al.  Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions , 2019, IEEE Access.

[47]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[48]  Yi Su,et al.  A Deep Learning Approach for Tumor Tissue Image Classification , 2016, BioMed.

[49]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[50]  Rose Qingyang Hu,et al.  Sensor-Based Human Activity Recognition for Smart Healthcare: A Semi-supervised Machine Learning , 2019, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

[51]  Joachim Denzler,et al.  Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Lin Yang,et al.  Deep Learning Based Instance Segmentation in 3D Biomedical Images Using Weak Annotation , 2018, MICCAI.

[53]  Andrew Y. Ng,et al.  CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning , 2017, ArXiv.

[54]  Cheng Guo,et al.  Entity Embeddings of Categorical Variables , 2016, ArXiv.

[55]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[56]  Max Welling,et al.  Histopathological classification of precursor lesions of esophageal adenocarcinoma: A Deep Multiple Instance Learning Approach , 2018 .

[57]  Song Wang,et al.  Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images , 2018, Medical Imaging.

[58]  Huaizu Jiang,et al.  Face Detection with the Faster R-CNN , 2016, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[59]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[60]  P. Lambin,et al.  Radiomics: the bridge between medical imaging and personalized medicine , 2017, Nature Reviews Clinical Oncology.

[61]  Lisa Tang,et al.  Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation , 2016, IEEE Transactions on Medical Imaging.

[62]  Feng Gu,et al.  A Deep Learning Framework for Automatic Diagnosis in Lung Cancer , 2018, ArXiv.

[63]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Jun Zhao,et al.  Recurrent Convolutional Neural Networks for Text Classification , 2015, AAAI.

[65]  Albert C. S. Chung,et al.  Deep supervision with additional labels for retinal vessel segmentation task , 2018, MICCAI.

[66]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Nuno Vasconcelos,et al.  Learning Complexity-Aware Cascades for Pedestrian Detection , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[69]  Sotirios A. Tsaftaris,et al.  Factorised spatial representation learning: application in semi-supervised myocardial segmentation , 2018, MICCAI.

[70]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[71]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[72]  Sam Friedman,et al.  Online Detection of Repeated Structures in Point Clouds of Urban Scenes for Compression and Registration , 2013, International Journal of Computer Vision.

[73]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[74]  Jordi Pont-Tuset,et al.  The Open Images Dataset V4 , 2018, International Journal of Computer Vision.

[75]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[76]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[77]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[78]  Jianxin Wang,et al.  A survey on U-shaped networks in medical image segmentations , 2020, Neurocomputing.

[79]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[80]  Max A. Viergever,et al.  Automatic Segmentation of MR Brain Images With a Convolutional Neural Network , 2016, IEEE Transactions on Medical Imaging.

[81]  Qiang Wang,et al.  Benchmarking State-of-the-Art Deep Learning Software Tools , 2016, 2016 7th International Conference on Cloud Computing and Big Data (CCBD).

[82]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[83]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[84]  Quoc V. Le,et al.  Learning to Skim Text , 2017, ACL.

[85]  Doina Precup,et al.  Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation , 2018, MICCAI.

[86]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[87]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[88]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[89]  Shuo Yang,et al.  WIDER FACE: A Face Detection Benchmark , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[90]  Dwarikanath Mahapatra,et al.  Semi-supervised learning and graph cuts for consensus based medical image segmentation , 2016, Pattern Recognit..

[91]  Sina Honari,et al.  Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[92]  Hayit Greenspan,et al.  Synthetic data augmentation using GAN for improved liver lesion classification , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[93]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[94]  A FischlerMartin,et al.  Random sample consensus , 1981 .

[95]  Daniel Rueckert,et al.  A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction , 2017, IPMI.

[96]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[97]  Gustavo Carneiro,et al.  Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance , 2017, Medical Image Anal..

[98]  Shuang Wang,et al.  Fuzzy Sparse Autoencoder Framework for Single Image Per Person Face Recognition , 2018, IEEE Transactions on Cybernetics.

[99]  Carole Lartizien,et al.  Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: Application to epilepsy lesion screening , 2019, Medical Image Anal..

[100]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[101]  M. Viergever,et al.  Automatic Segmentation of MR Brain Images With a Convolutional Neural Network. , 2016, IEEE transactions on medical imaging.

[102]  Noboru Murata,et al.  Neural Network with Unbounded Activation Functions is Universal Approximator , 2015, 1505.03654.

[103]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[104]  Lars Petersson,et al.  Large scale sign detection using HOG feature variants , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[105]  Jianxiong Xiao,et al.  R-CNN for Small Object Detection , 2016, ACCV.

[106]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[107]  Xing Xie,et al.  Spatial pyramid mining for logo detection in natural scenes , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[108]  Xueding Wang,et al.  Medical breast ultrasound image segmentation by machine learning , 2019, Ultrasonics.

[109]  Palaiahnakote Shivakumara,et al.  CNN-RNN based method for license plate recognition , 2018, CAAI Trans. Intell. Technol..

[110]  Ben Glocker,et al.  Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation , 2017, MICCAI.

[111]  Wei-Shi Zheng,et al.  Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images , 2018, NeuroImage.

[112]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[113]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[114]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[115]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[116]  Iasonas Kokkinos,et al.  Shape grammar parsing via Reinforcement Learning , 2011, CVPR 2011.

[117]  Seyed-Ahmad Ahmadi,et al.  Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound , 2016, Comput. Vis. Image Underst..

[118]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[119]  S. Padmavathi,et al.  Facial parts detection using Viola Jones algorithm , 2017, 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS).

[120]  Gijs van Tulder,et al.  Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines. , 2016, IEEE transactions on medical imaging.

[121]  Chee Peng Lim,et al.  Medical image analysis using wavelet transform and deep belief networks , 2017, Expert Syst. Appl..

[122]  Dwarikanath Mahapatra,et al.  Elastic Registration of Medical Images With GANs , 2018, ArXiv.

[123]  Marleen de Bruijne,et al.  Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines , 2016, IEEE Transactions on Medical Imaging.

[124]  Klaus H. Maier-Hein,et al.  Deep MRI brain extraction: A 3D convolutional neural network for skull stripping , 2016, NeuroImage.

[125]  Jeremiah Neubert,et al.  Deep learning approaches to biomedical image segmentation , 2020 .

[126]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[127]  R. Nishikawa,et al.  Automated mammographic breast density estimation using a fully convolutional network , 2018, Medical physics.

[128]  Constantin Vertan,et al.  The use of deep learning in image segmentation, classification and detection , 2016, ArXiv.

[129]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[130]  Hao Chen,et al.  3D deeply supervised network for automated segmentation of volumetric medical images , 2017, Medical Image Anal..

[131]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Qi Tian,et al.  CenterNet: Keypoint Triplets for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[133]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[134]  Jiadong Ren,et al.  A Euclidean Group Assessment on Semi-Supervised Clustering for Healthcare Clinical Implications Based on Real-Life Data , 2019, International journal of environmental research and public health.

[135]  Bernt Schiele,et al.  CityPersons: A Diverse Dataset for Pedestrian Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[136]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[137]  Xiangyang Xue,et al.  Arbitrary-Oriented Scene Text Detection via Rotation Proposals , 2017, IEEE Transactions on Multimedia.

[138]  Le Lu,et al.  DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning , 2018, Journal of medical imaging.

[139]  Chun-Xia Zhang,et al.  A sparse-response deep belief network based on rate distortion theory , 2014, Pattern Recognit..

[140]  Nassir Navab,et al.  Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling , 2018, MICCAI.

[141]  John G. Csernansky,et al.  Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults , 2010, Journal of Cognitive Neuroscience.

[142]  A. Franco,et al.  NeuroImage: Clinical , 2022 .

[143]  Yufan He,et al.  Parallel deep neural networks for endoscopic OCT image segmentation. , 2019, Biomedical optics express.

[144]  Ze-Nian Li,et al.  Object detection using edge histogram of oriented gradient , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[145]  Luc Van Gool,et al.  Depth and Appearance for Mobile Scene Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[146]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[147]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[148]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[149]  Tieniu Tan,et al.  Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[150]  Lipo Wang,et al.  Deep Learning Applications in Medical Image Analysis , 2018, IEEE Access.

[151]  Shu Liao,et al.  Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition , 2016, IEEE Transactions on Medical Imaging.

[152]  Marios Anthimopoulos,et al.  Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network , 2016, IEEE Transactions on Medical Imaging.

[153]  M. He,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[154]  Rui Liao,et al.  Pairwise domain adaptation module for CNN-based 2-D/3-D registration , 2018, Journal of medical imaging.

[155]  Ruey-Feng Chang,et al.  Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation , 2019, IEEE Transactions on Medical Imaging.

[156]  Xinjian Chen,et al.  Detection and registration of vessels for longitudinal 3D retinal OCT images using SURF , 2018, Medical Imaging.

[157]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[158]  Ross B. Girshick,et al.  LVIS: A Dataset for Large Vocabulary Instance Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[159]  Simon J. Doran,et al.  Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[160]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[161]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[162]  Luis Perez,et al.  The Effectiveness of Data Augmentation in Image Classification using Deep Learning , 2017, ArXiv.

[163]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[164]  Ge Wang,et al.  A Perspective on Deep Imaging , 2016, IEEE Access.

[165]  Arvid Lundervold,et al.  An overview of deep learning in medical imaging focusing on MRI , 2018, Zeitschrift fur medizinische Physik.

[166]  Michael Blum,et al.  High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks , 2016, Journal of Digital Imaging.

[167]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[168]  Shuicheng Yan,et al.  Scale-Aware Fast R-CNN for Pedestrian Detection , 2015, IEEE Transactions on Multimedia.

[169]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Wei Shen,et al.  Multi-scale Convolutional Neural Networks for Lung Nodule Classification , 2015, IPMI.

[171]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[172]  Hei Law,et al.  CornerNet: Detecting Objects as Paired Keypoints , 2018, ECCV.

[173]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[174]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[175]  Mohammad Teshnehlab,et al.  Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation , 2010, Eng. Appl. Artif. Intell..

[176]  Sébastien Ourselin,et al.  Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning , 2017, IEEE Transactions on Medical Imaging.

[177]  Sumit Soman,et al.  Deep learning for health informatics: Recent trends and future directions , 2017, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[178]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[179]  Junaid Qadir,et al.  Secure and Robust Machine Learning for Healthcare: A Survey , 2020, IEEE Reviews in Biomedical Engineering.

[180]  Max A. Viergever,et al.  Deep Learning for Multi-Task Medical Image Segmentation in Multiple Modalities , 2016, MICCAI.

[181]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[182]  Mert R. Sabuncu,et al.  An Unsupervised Learning Model for Deformable Medical Image Registration , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[183]  Ahmed Atwan,et al.  Current trends in medical image registration and fusion , 2016 .

[184]  Sebastian Ruder,et al.  Universal Language Model Fine-tuning for Text Classification , 2018, ACL.

[185]  Hao Chen,et al.  VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images , 2017, NeuroImage.

[186]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[187]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.