Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain

Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

[1]  Price,et al.  Analysis of laser-plasma coupling and hydrodynamic phenomena in long-pulse, long-scale-length plasmas. , 1987, Physical review. A, General physics.

[2]  Adam T. Drobot,et al.  Computer Applications in Plasma Science and Engineering , 2011, Springer New York.

[3]  Rosen,et al.  High temperatures in inertial confinement fusion radiation cavities heated with 0.35 microm light. , 1994, Physical review letters.

[4]  William F. Krupke,et al.  IN HONOR OF ACADEMICIAN N. G. BASOV'S SIXTIETH BIRTHDAY: Future development of high-power solid-state laser systems , 1983 .

[5]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[6]  W. B. Thompson,et al.  Advances in plasma physics , 1968 .

[7]  H. K. Forsen,et al.  Fusion policy advisory committee: final report , 1991 .

[8]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[9]  Marshall,et al.  Dynamics of high-Z plasmas produced by a short-wavelength laser. , 1987, Physical review letters.

[10]  M. J. Boyle,et al.  Laser fusion experiments at 4 TW , 1978 .

[11]  D. Phillion,et al.  Brillouin scatter in laser-produced plasmas , 1977 .

[12]  R. Mason,et al.  Preheat Effects on Microballoon Laser Fusion Implosions , 1975 .

[13]  Erlan S. Bliss,et al.  Nova experimental facility (invited) , 1986 .

[14]  M. Rosen Evidence of a laser intensity threshold for the onset of inhibited electron transport , 1984 .

[15]  M. B. Nelson,et al.  LaNSA: A large neutron scintillator array for neutron spectroscopy at Nova , 1992 .

[16]  J. Stamper,et al.  Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation. Interim report , 1978 .

[17]  R. Mccrory,et al.  Dependence of laser-driven compression efficiency on wavelength , 1977 .

[18]  John Lindl,et al.  Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion , 1992 .

[19]  R. Craxton,et al.  Nonlinear laser–matter interaction processes in long‐scale‐length plasmas , 1992 .

[20]  L. Spitzer Physics of fully ionized gases , 1956 .

[21]  A. M. Winslow,et al.  Multi-group diffusion of energetic charged particles , 1975 .

[22]  Williams,et al.  Nonlinear theory and simulations of stimulated Brillouin backscatter in multispecies plasmas. , 1995, Physical review letters.

[23]  Stephen E. Bodner,et al.  Rayleigh-Taylor Instability and Laser-Pellet Fusion , 1974 .

[24]  William F. Krupke,et al.  Solid State Laser Driver for an ICF Reactor , 1989 .

[25]  Munro,et al.  Low stimulated Brillouin backscatter observed from large, hot plasmas in gas-filled Hohlraums. , 1995, Physical review letters.

[26]  John Lindl,et al.  Hydrodynamic stability and the direct drive approach to laser fusion , 1990 .

[27]  J. Kilkenny,et al.  Laser‐driven hydrodynamic instability experiments* , 1992 .

[28]  D. Speck,et al.  Argus laser system: performance summary. , 1978, Applied optics.

[29]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[30]  Nakai,et al.  Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. , 1995, Physical review letters.

[31]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[32]  Masakatsu Murakami,et al.  Indirectly driven targets for inertial confinement fusion , 1991 .

[33]  S. Pollaine,et al.  Effect of capsule aspect ratio on hydrodynamic efficiency , 1986 .

[34]  Richard A. Lerche,et al.  Demonstration of an x‐ray ring‐aperture microscope for inertial‐confinement fusion experiments , 1992 .

[35]  S. P. Hatchett,et al.  Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers , 1987 .

[36]  P. Bell,et al.  High‐speed gated x‐ray imagers (invited) , 1988 .

[37]  Francis F. Chen,et al.  Dependence of stimulated Brillouin scattering on target material and f number , 1981 .

[38]  Maury Tigner,et al.  Review of the department of energy's inertial confinement fusion program , 1991 .

[39]  Roger O. Bangerter,et al.  Energy from Inertial Fusion , 1992 .

[40]  Weber,et al.  Laser-driven planar Rayleigh-Taylor instability experiments. , 1992, Physical review letters.

[41]  Murakami,et al.  Experimental observation of laser-induced radiation heat waves. , 1990, Physical review letters.

[42]  C. Longmire,et al.  Elementary Plasma Physics , 1963 .

[43]  J. Kilkenny,et al.  K- and L-shell x-ray spectroscopic measurements of fuel and pusher dopants in indirectly driven ICF implosions , 1994 .

[44]  O. Willi,et al.  Study of instabilities in long scale‐length plasmas with and without laser‐beam‐smoothing techniques , 1990 .

[45]  K. Shuler,et al.  Atomic theory of gas dynamics , 1965 .

[46]  C. Labaune,et al.  Filamentation in long scale length plasmas: Experimental evidence and effects of laser spatial incoherence , 1992 .

[47]  Herrmann,et al.  X-ray generation in a cavity heated by 1.3- or 0.44- microm laser light. I. Time-integrated measurements. , 1988, Physical review. A, General physics.

[48]  E. Campbell Recent results from the Nova program at LLNL , 1991 .

[49]  Stephen D. Jacobs,et al.  OMEGA upgrade laser for direct-drive target experiments , 1993 .

[50]  R. Sigel,et al.  The x-ray-driven heating wave , 1989 .

[51]  S. Haan,et al.  Weakly nonlinear hydrodynamic instabilities in inertial fusion , 1991 .

[52]  John T. Hunt,et al.  Present And Future Performance Of The Nova Laser System , 1989 .

[53]  R. Parker,et al.  Progress Toward a Tokamak Fusion Reactor , 1992 .

[54]  Turner,et al.  Modeling and interpretation of Nova's symmetry scaling data base. , 1994, Physical review letters.

[55]  Hotraum target for heavy ion inertial fusion , 1993 .

[56]  R. Sigel,et al.  Self‐similar expansion of dense matter due to heat transfer by nonlinear conduction , 1983 .

[57]  P.H.Y. Lee,et al.  Exploding‐pusher‐tamper areal density measurement by neutron activation , 1980 .

[58]  R. Short,et al.  Filamentation of laser light in flowing plasmas , 1982 .

[59]  E. Bliss,et al.  The Shiva laser-fusion facility , 1981, IEEE Journal of Quantum Electronics.

[60]  C. Olson,et al.  Physics of gas breakdown for ion beam transport in gas , 1993 .

[61]  D. Cook,et al.  Inertial Confinement Fusion with Light Ion Beams , 1986, Science.

[62]  Ronald C. Kirkpatrick,et al.  The physics of DT ignition in small fusion targets , 1981 .

[63]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[64]  Coward,et al.  Fusion power production from TFTR plasmas fueled with deuterium and tritium. , 1994, Physical review letters.

[65]  J. D. Kilkenny,et al.  A new multichannel soft x‐ray framing camera for fusion experiments , 1992 .

[66]  R. J. Mason,et al.  Thermonuclear burn characteristics of compressed deuterium‐tritium microspheres , 1974 .

[67]  Peter A. Amendt,et al.  Design and modeling of ignition targets for the National Ignition Facility , 1995 .

[68]  Tsakiris,et al.  X-ray generation in a cavity heated by 1.3- or 0.44- microm laser light. III. Comparison of the experimental results with theoretical predictions for x-ray confinement. , 1988, Physical review. A, General physics.

[69]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[70]  J. Meyer-ter-Vehn,et al.  Radiation symmetrization in indirectly driven ICF targets , 1991 .

[71]  Lawrence S. Mok,et al.  Noncontact thermal gradient method for fabrication of uniform cryogenic inertial fusion target , 1985 .

[72]  Goldstein,et al.  Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.

[73]  D. Youngs,et al.  Numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1984 .

[74]  Heinrich Hora,et al.  Laser Interaction and Related Plasma Phenomena , 2005 .

[75]  W. Manheimer,et al.  Steady‐state planar ablative flow , 1981 .

[76]  Weber,et al.  Multimode Rayleigh-Taylor experiments on Nova. , 1994, Physical review letters.

[77]  Richard A. Sacks,et al.  Direct drive cryogenic ICF capsules employing D-T wetted foam , 1987 .

[78]  D. W. Hewett,et al.  Corona plasma instabilities in heavy ion fusion targets , 1991 .

[79]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[80]  J. A. Fleck,et al.  An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport , 1971 .

[81]  John Lindl,et al.  Two-dimensional simulation of fluid instability in laser-fusion pellets , 1975 .

[82]  L. Suter,et al.  Witness foam‐ball diagnostic for Nova hohlraum time‐dependent drive asymmetry , 1995 .

[83]  Keane,et al.  X-ray spectroscopic measurements of high densities and temperatures from indirectly driven inertial confinement fusion capsules. , 1993, Physical review letters.

[84]  E. M. Epperlein,et al.  Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation , 1986 .

[85]  Williams,et al.  Influence of spatial and temporal laser beam smoothing on stimulated brillouin scattering in filamentary laser light. , 1995, Physical review letters.

[86]  Munro Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients. , 1988, Physical review. A, General physics.

[87]  Haan Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. , 1989, Physical review. A, General physics.

[88]  Andrew J. Schmitt,et al.  Theory of induced spatial incoherence , 1987 .

[89]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[90]  Stephen D. Jacobs,et al.  The omega high-power phosphate-glass system: Design and performance , 1981 .

[91]  D. Layzer,et al.  On the Instability of Superposed Fluids in a Gravitational Field. , 1955 .

[92]  W. Mead,et al.  Effect of symmetry requirements on the wavelength scaling of directly driven laser fusion implosions , 1983 .

[93]  S. Jacobs,et al.  Demonstration of high efficiency third harmonic conversion of high power Nd-glass laser radiation , 1980 .

[94]  J. Meyer-ter-Vehn,et al.  On energy gain of fusion targets: the model of Kidder and Bodner improved , 1982 .

[95]  J. Meyer-ter-Vehn,et al.  Thermal X-Ray Emission from Ion-Beam-Heated Matter , 1990 .

[96]  Keane,et al.  Diagnosis of pusher-fuel mix in indirectly driven Nova implosions. , 1994, Physical review letters.

[97]  M. Rosen,et al.  Exploding pusher performance − A theoretical model , 1979 .

[98]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[99]  Kunioki Mima,et al.  Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .

[100]  John Lindl,et al.  Radiation converter physics and a method for obtaining the upper limit for gain in heavy ion fusion , 1994 .

[101]  J. D. Kilkenny,et al.  Experimental results on hydrodynamic instabilities in laser-accelerated planar packages , 1990 .

[102]  J. D. Kilkenny,et al.  High Speed Gated X-Ray Imagers , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[103]  V. Rozanov,et al.  Possibility of determining the characteristics of laser plasma by measuring the neutrons of the DT reaction , 1975 .

[104]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[105]  John M. Dawson,et al.  Optical Absorption and Expansion of Laser‐Produced Plasmas , 1969 .

[106]  B. Levi Veil of Secrecy is Lifted from Parts of Livermore's Laser Fusion Program , 1994 .

[107]  H. Nordman,et al.  On electromagnetic ballooning modes in fluid and kinetic descriptions , 1995 .

[108]  D. R. Speck,et al.  Performance of the NIF Prototype Beamlet , 1994 .

[109]  Munro,et al.  Large growth Rayleigh-Taylor experiments using shaped laser pulses. , 1991, Physical review letters.

[110]  R. E. Marshak,et al.  Effect of Radiation on Shock Wave Behavior , 1958 .

[111]  A. Caruso,et al.  The Quality of the Illumination for a Spherical Capsule Enclosed in a Radiating Cavity , 1991 .

[112]  J. Wallace,et al.  Symmetry experiments in gas-filled hohlraums at NOVA , 1996 .

[113]  Nelson,et al.  Indirectly driven, high convergence inertial confinement fusion implosions. , 1994, Physical review letters.

[114]  A. B. Langdon,et al.  Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma , 1993 .

[115]  Takayasu Mochizuki,et al.  Nd-doped phosphate glass laser systems for laser-fusion research , 1981 .

[116]  R. Bock Heavy Ion Inertial Fusion: Status and Perspectives , 1992 .

[117]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.