A rapid and efficient isogeometric design space exploration framework with application to structural mechanics
暂无分享,去创建一个
John A. Evans | Austin J. Herrema | Ming-Chen Hsu | Joseph Benzaken | Ming-Chen Hsu | J. Benzaken | M. Hsu
[1] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[2] Arian Novruzi,et al. Structure of shape derivatives , 2002 .
[3] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[4] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[5] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[6] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[7] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[8] Volker Schulz,et al. A Riemannian View on Shape Optimization , 2012, Foundations of Computational Mathematics.
[9] Helmut Harbrecht,et al. Computing quantities of interest for random domains with second order shape sensitivity analysis , 2015 .
[10] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[11] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[12] Baskar Ganapathysubramanian,et al. A framework for parametric design optimization using isogeometric analysis , 2017 .
[13] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[14] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[15] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[16] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[17] Knut Petras,et al. Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.
[18] Helmut Harbrecht,et al. On output functionals of boundary value problems on stochastic domains , 2009 .
[19] Peter Benner,et al. Low-Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients , 2015, SIAM/ASA J. Uncertain. Quantification.
[20] Mircea Grigoriu. Parametric models for samples of random functions , 2015, J. Comput. Phys..
[21] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[22] L. Heltai,et al. Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils , 2015 .
[23] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[24] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[25] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[26] Reinhold Schneider,et al. On Convergence in Elliptic Shape Optimization , 2007, SIAM J. Control. Optim..
[27] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[28] J. Burkardt. Slow Exponential Growth for Clenshaw Curtis Sparse Grids , 2014 .
[29] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[30] A L Marsden,et al. A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. , 2017, Computer methods in applied mechanics and engineering.
[31] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[32] Sandia Report,et al. Definition of a 5MW/61.5m Wind Turbine Blade Reference Model , 2013 .
[33] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[34] John Burkardt,et al. The “ Combining Coefficient ” for Anisotropic Sparse Grids , 2012 .
[35] Michael B. Giles,et al. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations , 2014, J. Comput. Phys..
[36] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[37] J. Haslinger,et al. 2. A Mathematical Introduction to Sizing and Shape Optimization , 2003 .
[38] V. Komkov. Optimal shape design for elliptic systems , 1986 .
[39] S. Ravindran. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .
[40] D. Chapelle,et al. The Finite Element Analysis of Shells - Fundamentals , 2003 .
[41] Yuri Bazilevs,et al. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .
[42] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[43] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[44] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[45] J. Jonkman,et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .
[46] Michel C. Delfour. Shapes and Geometries , 1987 .
[47] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[48] Andrew B. Kahng,et al. ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.
[49] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[50] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[51] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[52] Leo Wai-Tsun Ng,et al. Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .
[53] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[54] Anindya Ghoshal,et al. An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..
[55] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[56] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[57] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[58] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..