A rapid and efficient isogeometric design space exploration framework with application to structural mechanics

Abstract In this paper, we present an isogeometric analysis framework for design space exploration. While the methodology is presented in the setting of structural mechanics, it is applicable to any system of parametric partial differential equations. The design space exploration framework elucidates design parameter sensitivities used to inform initial and early-stage design. Moreover, this framework enables the visualization of a full system response, including the displacement and stress fields throughout the domain, by providing an approximation to the system solution vector. This is accomplished through a collocation-like approach where various geometries throughout the design space under consideration are sampled. The sampling scheme follows a quadrature rule while the physical solutions to these sampled geometries are obtained through an isogeometric method. A surrogate model to the design space solution manifold is constructed through either an interpolating polynomial or pseudospectral expansion. Examples of this framework are presented with applications to the Scordelis–Lo roof, a Flat L-Bracket, and an NREL 5 MW wind turbine blade.

[1]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[2]  Arian Novruzi,et al.  Structure of shape derivatives , 2002 .

[3]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[4]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[5]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[6]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[7]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[8]  Volker Schulz,et al.  A Riemannian View on Shape Optimization , 2012, Foundations of Computational Mathematics.

[9]  Helmut Harbrecht,et al.  Computing quantities of interest for random domains with second order shape sensitivity analysis , 2015 .

[10]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[11]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[12]  Baskar Ganapathysubramanian,et al.  A framework for parametric design optimization using isogeometric analysis , 2017 .

[13]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[14]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[15]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[16]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[17]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[18]  Helmut Harbrecht,et al.  On output functionals of boundary value problems on stochastic domains , 2009 .

[19]  Peter Benner,et al.  Low-Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients , 2015, SIAM/ASA J. Uncertain. Quantification.

[20]  Mircea Grigoriu Parametric models for samples of random functions , 2015, J. Comput. Phys..

[21]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[22]  L. Heltai,et al.  Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils , 2015 .

[23]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[24]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[25]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[26]  Reinhold Schneider,et al.  On Convergence in Elliptic Shape Optimization , 2007, SIAM J. Control. Optim..

[27]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[28]  J. Burkardt Slow Exponential Growth for Clenshaw Curtis Sparse Grids , 2014 .

[29]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[30]  A L Marsden,et al.  A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. , 2017, Computer methods in applied mechanics and engineering.

[31]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[32]  Sandia Report,et al.  Definition of a 5MW/61.5m Wind Turbine Blade Reference Model , 2013 .

[33]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[34]  John Burkardt,et al.  The “ Combining Coefficient ” for Anisotropic Sparse Grids , 2012 .

[35]  Michael B. Giles,et al.  A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations , 2014, J. Comput. Phys..

[36]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[37]  J. Haslinger,et al.  2. A Mathematical Introduction to Sizing and Shape Optimization , 2003 .

[38]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[39]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[40]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[41]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[42]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[43]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[44]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[45]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[46]  Michel C. Delfour Shapes and Geometries , 1987 .

[47]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[48]  Andrew B. Kahng,et al.  ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[49]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[50]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[51]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[52]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[53]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[54]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[55]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[56]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[57]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[58]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..