Nested sums, expansion of transcendental functions and multiscale multiloop integrals

Expansion of higher transcendental functions in a small parameter are needed in many areas of science. For certain classes of functions this can be achieved by algebraic means. These algebraic tools are based on nested sums and can be formulated as algorithms suitable for an implementation on a computer. Examples such as expansions of generalized hypergeometric functions or Appell functions are discussed. As a further application, we give the general solution of a two-loop integral, the so-called C-topology, in terms of multiple nested sums. In addition, we discuss some important properties of nested sums, in particular we show that they satisfy a Hopf algebra.

[1]  R. M. EL-ASHWAH,et al.  HYPERGEOMETRIC FUNCTIONS , 2004 .

[2]  L. Dixon,et al.  Two-loop amplitudes for gluon fusion into two photons , 2001, hep-ph/0109078.

[3]  L. Dixon,et al.  QCD and QED corrections to light-by-light scattering , 2001, hep-ph/0109079.

[4]  S. Weinzierl,et al.  Dipole formalism with heavy fermions , 2001, hep-ph/0102207.

[5]  C. Oleari,et al.  Two-loop QCD corrections to gluon–gluon scattering , 2001, hep-ph/0102201.

[6]  S. Laporta Calculation of master integrals by difference equations , 2001, hep-ph/0102032.

[7]  C. Oleari,et al.  Two-loop QCD corrections to massless quark-gluon scattering , 2001, hep-ph/0101304.

[8]  T. Gehrmann,et al.  Two-loop master integrals for jets: the non-planar topologies , 2001, hep-ph/0101124.

[9]  C. Oleari,et al.  Two-loop QCD corrections to massless identical quark scattering☆ , 2000, hep-ph/0011094.

[10]  C. Oleari,et al.  Two-loop QCD corrections to the scattering of massless distinct quarks ? ? Work supported in part by , 2000, hep-ph/0010212.

[11]  L. Dixon,et al.  Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.

[12]  C. Oleari,et al.  One-loop QCD corrections to massless quark scattering at NNLO ? ? Work supported in part by the UK P , 2001 .

[13]  S. Laporta,et al.  HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.

[14]  M. Kalmykov,et al.  New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000, hep-th/0012189.

[15]  T. Gehrmann,et al.  Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000, hep-ph/0008287.

[16]  V. Smirnov Analytical result for dimensionally regularized massless master double box with one leg off-shell , 2000, hep-ph/0007032.

[17]  S. Moch,et al.  Mathematics for structure functions , 2000, hep-ph/0004235.

[18]  M. Kalmykov,et al.  Single-scale diagrams and multiple binomial sums , 2000, hep-th/0004010.

[19]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000, hep-ph/0004013.

[20]  L. Dixon,et al.  A two-loop four-gluon helicity amplitude in QCD , 2000, hep-ph/0001001.

[21]  S. Moch,et al.  Deep-inelastic structure functions at two loops , 1999, hep-ph/9912355.

[22]  T. Gehrmann,et al.  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[23]  A. I. Davydychev Explicit results for all orders of theɛexpansion of certain massive and massless diagrams , 1999, hep-ph/9910224.

[24]  C. Oleari,et al.  Application of the negative-dimension approach to massless scalar box integrals , 1999, hep-ph/9907523.

[25]  C. Oleari,et al.  Scalar one-loop integrals using the negative-dimension approach , 1999, hep-ph/9907494.

[26]  J. Fleischer,et al.  Single-mass-scale diagrams: construction of a basis for the ε-expansion , 1999 .

[27]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999, hep-ph/9909506.

[28]  Michael E. Hoffman Quasi-Shuffle Products , 1999, math/9907173.

[29]  V. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999, hep-ph/9905323.

[30]  P. Uwer,et al.  One-loop splitting amplitudes in gauge theory , 1999, hep-ph/9903515.

[31]  J. Blumlein,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1998, hep-ph/9810241.

[32]  J. Fleischer,et al.  Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1998, hep-ph/9808242.

[33]  J. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1998, hep-ph/9806280.

[34]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[35]  A. Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998, hep-th/9808042.

[36]  D. Kreimer On the Hopf algebra structure of perturbative quantum field theories , 1997, q-alg/9707029.

[37]  Anthony Joseph,et al.  First European Congress of Mathematics , 1994 .

[38]  E. Boos,et al.  A method of calculating massive Feynman integrals , 1991 .

[39]  D. Kazakov,et al.  Total αs correction to the deep-inelastic scattering cross-sections ratio R = σL/σT in QCD , 1988 .

[40]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[41]  A. González-Arroyo,et al.  Second-order contributions to the structure functions in deep inelastic scattering (III). The singlet case , 1980 .

[42]  Felix Yndurain,et al.  Second-order contributions to the structure functions in deep inelastic scattering (I). Theoretical calculations , 1979 .

[43]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1966 .

[44]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[45]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[46]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[47]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .