Multi-objective optimization of a polymer electrolyte fuel cell membrane electrode assembly

A multi-objective multi-variable gradient-based fuel cell optimization framework is presented in order to optimize fuel cell membrane electrode assembly fabrication. The optimization target is to simultaneously maximize the cell current density at a given voltage and minimize its production costs. The design variables are electrode composition parameters such as platinum loading and porosity. To develop this framework, a two-dimensional through-the-channel single-phase membrane electrode assembly model is implemented and coupled to an optimization algorithm. In order to solve the optimization problem in a reasonable time, a gradient-based optimization method in conjunction with analytical sensitivities of the electrode model with respect to design parameters such as amount of electrolyte are used. Results show the trade-offs between performance and cost and illustrate that large gains in performance and reductions in production costs are possible. They also highlight the problems associated with formulating the optimization problem without taking into account production costs.

[1]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[2]  Trung Van Nguyen,et al.  Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells , 2004 .

[3]  Sanjeev Mukerjee,et al.  Effects of Nafion impregnation on performances of PEMFC electrodes , 1998 .

[4]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[5]  Ned Djilali,et al.  Analysis of Water Transport in Proton Exchange Membranes Using a Phenomenological Model , 2005 .

[6]  Mica Grujicic,et al.  Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells , 2004 .

[7]  Hubert A. Gasteiger,et al.  Dependence of PEM fuel cell performance on catalyst loading , 2004 .

[8]  JiGuan G. Lin Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints , 1976 .

[9]  Afzal Suleman,et al.  Multi-variable optimization of PEMFC cathodes using an agglomerate model , 2007 .

[10]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[11]  G. Sasikumar,et al.  Optimum Nafion content in PEM fuel cell electrodes , 2004 .

[12]  I. Kim,et al.  Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation , 2006 .

[13]  Nigel P. Brandon,et al.  Measurement of the current distribution along a single flow channel of a solid polymer fuel cell , 2001 .

[14]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[15]  Sanjeev Mukerjee,et al.  High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition , 2006 .

[16]  L. Huyse,et al.  Robust airfoil optimization to achieve drag reduction over a range of Mach numbers , 2002 .

[17]  Datong Song,et al.  Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells II. Experimental Study of the Effect of Nafion Distribution , 2005 .

[18]  Afzal Suleman,et al.  Optimal Design of Ultralow-Platinum PEMFC Anode Electrodes , 2008 .

[19]  A. Suleman,et al.  Numerical optimization of proton exchange membrane fuel cell cathodes , 2007 .

[20]  T. Springer,et al.  Model for polymer electrolyte fuel cell operation on reformate feed , 2001 .

[21]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[22]  Trung Van Nguyen,et al.  Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects , 2005 .

[23]  Ned Djilali,et al.  Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities , 2007 .

[24]  Titichai Navessin,et al.  A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells , 2005 .

[25]  T. Springer,et al.  Dual-Pathway Kinetic Equation for the Hydrogen Oxidation Reaction on Pt Electrodes , 2006 .

[26]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[27]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[28]  A. Parthasarathy,et al.  Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion Interface: Electrode Kinetics and Mass Transport , 1992 .

[29]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[30]  A. Mawardi,et al.  Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density , 2005 .

[31]  Titichai Navessin,et al.  Numerical study of PEM fuel cell cathode with non-uniform catalyst layer , 2004 .

[32]  P. Ekdunge,et al.  Modelling the PEM fuel cell cathode , 1997 .

[33]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[34]  Sanjeev Mukerjee,et al.  Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells , 1993 .

[35]  Anthony Kucernak,et al.  Electrocatalysis under Conditions of High Mass Transport Rate: Oxygen Reduction on Single Submicrometer-Sized Pt Particles Supported on Carbon , 2004 .

[36]  K. M. Chittajallu,et al.  Design and optimization of polymer electrolyte membrane (PEM) fuel cells , 2004 .

[37]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[38]  K. M. Chittajallu,et al.  Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells , 2004 .

[39]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[40]  Christopher Hebling,et al.  Characterising PEM Fuel Cell Performance Using a Current Distribution Measurement in Comparison with a CFD Model , 2004 .

[41]  Eric Irissou,et al.  PEMFC Anode with Very Low Pt Loadings Using Pulsed Laser Deposition , 2003 .

[42]  G. Lindbergh,et al.  Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode , 2003 .

[43]  Peter Lund,et al.  Effect of ambient conditions on performance and current distribution of a polymer electrolyte membrane fuel cell , 2003 .

[44]  Akeel A. Shah,et al.  A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst , 2007 .

[45]  D. Wilkinson,et al.  In-situ methods for the determination of current distributions in PEM fuel cells , 1998 .

[46]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[47]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[48]  Christian Roy,et al.  Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology , 2003 .

[49]  Hubert A. Gasteiger,et al.  Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC , 2006 .

[50]  G. Squadrito,et al.  Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance , 2001 .

[51]  Kunal Karan Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode , 2007 .

[52]  Trung Van Nguyen,et al.  Current distribution in PEM fuel cells. Part 2: Air operation and temperature effect , 2005 .

[53]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .

[54]  Xianguo Li,et al.  Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell , 1999 .

[55]  R. Borup,et al.  Identifying Contributing Degradation Phenomena in PEM Fuel Cell Membrane Electride Assemblies Via Electron Microscopy , 2006 .

[56]  T. Zawodzinski,et al.  Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells , 2003 .

[57]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[58]  David W. Zingg,et al.  Aerodynamic Optimization Under a Range of Operating Conditions , 2006 .