Simplifying Pseudo-Boolean Constraints in Residual Number Systems

We present an encoding of pseudo-Boolean constraints based on decomposition with respect to a residual number system. We illustrate that careful selection of the base for the residual number system, and when bit-blasting modulo arithmetic, results in a powerful approach when solving hard pseudo-Boolean constraints. We demonstrate, using a range of pseudo-Boolean constraint solvers, that the obtained constraints are often substantially easier to solve.

[1]  Albert Oliveras,et al.  A New Look at BDDs for Pseudo-Boolean Constraints , 2012, J. Artif. Intell. Res..

[2]  Peter Schneider-Kamp,et al.  Optimal Base Encodings for Pseudo-Boolean Constraints , 2010, TACAS.

[3]  Peter J. Stuckey,et al.  Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems , 2013, J. Artif. Intell. Res..

[4]  Christian Borgs,et al.  Phase transition and finite‐size scaling for the integer partitioning problem , 2001, Random Struct. Algorithms.

[5]  Shuvendu K. Lahiri,et al.  Deciding CLU Logic Formulas via Boolean and Pseudo-Boolean Encodings , 2002 .

[6]  Carlos Ansótegui,et al.  Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables , 2004, SAT.

[7]  David G. Mitchell,et al.  New Encoding for Translating Pseudo-Boolean Constraints into SAT , 2013, SARA.

[8]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[9]  Vasco M. Manquinho,et al.  The First Evaluation of Pseudo-Boolean Solvers (PB'05) , 2006, J. Satisf. Boolean Model. Comput..

[10]  Olivier Bailleux,et al.  Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.

[11]  Mutsunori Banbara,et al.  Compiling Finite Linear CSP into SAT , 2006, CP.

[12]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[13]  Joël Ouaknine,et al.  Deciding Bit-Vector Arithmetic with Abstraction , 2007, TACAS.

[14]  James M. Crawford,et al.  Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems , 1994, AAAI.

[15]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[16]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[17]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[18]  Peter Barth Logic-Based 0-1 Constraint Programming , 2011 .

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .