NANOPOWDER ENGINEERING: FROM SYNTHESIS TO SINTERING. THE CASE OF ALUMINA-BASED MATERIALS

Nanostructuration of ceramic materials is a challenging way to improve their performances reliability and lifetime. However, a successful approach to the production of tailored ceramic nanostructures requires the development of innovative concepts at any step of the manufacturing chain, starting from the elaboration and processing of ceramic powders. This review is aimed to collect and discuss the major advancements achieved along this complex path, exploiting some history cases to illustrate the benefits resulting from a nanopowders engineering approach applied to the processing of ceramic powders. Resume La nano-structuration des materiaux ceramiques represente une voie prometteuse d’amelioration de leurs performances. Cependant, le succes dans les approches de fabrication de ceramiques nano-structurees necessite le developpement de concepts innovants a tous les stades de la chaine d’elaboration, des la synthese ou la modification des poudres. Cette revue a pour but de collecter et de discuter des avancements realises dans ce domaine, en illustrant l’interet des approches d’ingenierie des nano-poudres ceramiques. Mots cles : Nanopowder, Sintering, Alumina, Zirconia, Nanocomposites.

[1]  P. Bowen,et al.  From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides , 2002 .

[2]  G. Messing,et al.  Sintering of α-Al2O3-seeded nanocrystalline γ-Al2O3 powders , 2002 .

[3]  D. Vollath,et al.  Synthesis and properties of ceramic nanoparticles and nanocomposites , 1997 .

[4]  R. Gadow,et al.  Manufacturing technologies for nanocomposite ceramic structural materials and coatings , 2008 .

[5]  S. A. Hassanzadeh-Tabrizi,et al.  Compressibility and sinterability of Al2O3–YAG nanocomposite powder synthesized by an aqueous sol–gel method , 2010 .

[6]  R. Gadow,et al.  Pressureless Sintering of Injection Molded Zirconia Toughened Alumina Nanocomposites , 2006 .

[7]  S. Kanzaki,et al.  Fabrication of low cost fine-grained alumina powders by seeding for high performance sintered bodies , 2004 .

[8]  Xidong Wang,et al.  Influence of different seeds on transformation of aluminum hydroxides and morphology of alumina grains by hot-pressing , 2003 .

[9]  A. Krell,et al.  Sintering transparent and other sub-μm alumina: The right powder , 2003 .

[10]  H. L. Liu,et al.  Preparation and characterization of Si3N4/TiN nanocomposites ceramic tool materials , 2009 .

[11]  Martin Sternitzke,et al.  Structural ceramic nanocomposites , 1997 .

[12]  Zhihong Liu,et al.  Wet-milling effect on the properties of ultrafine yttria-stabilized zirconia powders , 1996 .

[13]  E. Grulke,et al.  Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions , 2005 .

[14]  E. Sato,et al.  Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained α-alumina , 1995 .

[15]  A. Mukhopadhyay,et al.  Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review , 2007 .

[16]  A. Nemati,et al.  The Effects of Composition and Sintering Conditions on Zirconia Toughened Alumina (ZTA) Nanocomposites , 2010 .

[17]  Joshua D. Kuntz,et al.  A novel processing route to develop a dense nanocrystalline alumina matrix (< 100 nm) nanocomposite material , 2003 .

[18]  J. Chevalier,et al.  Effect of Heating Rate on Phase and Microstructural Evolution During Pressureless Sintering of a Nanostructured Transition Alumina , 2009 .

[19]  J. Chevalier,et al.  Follow-up of zirconia crystallization on a surface modified alumina powder , 2010 .

[20]  J. Chevalier,et al.  Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods , 2003 .

[21]  L. Montanaro,et al.  Sintering behaviour of gel-derived powders , 1991, Journal of Materials Science.

[22]  A. V. Galakhov Agglomerates in nanopowders and ceramic technology , 2009 .

[23]  F. Yen,et al.  Examinations on the Critical and Primary Crystallite Sizes during θ- to α-Phase Transformation of Ultrafine Alumina Powders , 2001 .

[24]  K. Kitajima,et al.  Fabrication of submicron alumina ceramics by pulse electric current sintering using M2+ (M = Mg, Ca, Ni)-doped alumina nanopowders , 2009 .

[25]  J. Ying,et al.  Mechanical synthesis of nanocrystalline α-Al2O3 seeds for enhanced transformation kinetics , 1997 .

[26]  D. L. Zhang,et al.  Processing of advanced materials using high-energy mechanical milling , 2004 .

[27]  R. Hellmig,et al.  Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behaviour , 1999 .

[28]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[29]  J. Chevalier,et al.  Alumina-based nanocomposites obtained by doping with inorganic salt solutions : Application to immiscible and reactive systems , 2009 .

[30]  Sylvain Deville,et al.  Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. , 2018 .

[31]  P. Pramanik,et al.  Low temperature chemical synthesis of nanosized ceramic powders , 2000 .

[32]  M. Banerjee,et al.  Effect of sintering on structure and mechanical properties of alumina–15 vol% zirconia nanocomposite compacts , 2010 .

[33]  F. Yen,et al.  Relationships between DTA and DIL characteristics of nano-sized alumina powders during θ- to α-phase transformation , 2002 .

[34]  R. Torrecillas,et al.  Creep behaviour of alumina/YAG nanocomposites obtained by a colloidal processing route , 2007 .

[35]  D. Luxembourg,et al.  Colloidal processing and sintering of nanosized transition aluminas , 2005 .

[36]  J. Chevalier,et al.  Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. , 2002, Biomaterials.

[37]  L. Lim,et al.  Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts , 2002 .

[38]  F. Yen,et al.  Fabrication of Nano‐Scaled α‐Al2O3 Crystallites Through Heterogeneous Precipitation of Boehmite in a Well‐Dispersed θ‐Al2O3‐Suspension , 2007 .

[39]  R. Laine,et al.  Pressureless Sintering t‐zirconia@δ‐Al2O3 (54 mol%) Core–Shell Nanopowders at 1120°C Provides Dense t‐Zirconia‐Toughened α‐Al2O3 Nanocomposites , 2010 .

[40]  H. Hahn,et al.  Nanoceramics by chemical vapour synthesis , 2003, International Journal of Materials Research.

[41]  Jiangong Li,et al.  Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics , 2008 .

[42]  Dustin M. Hulbert,et al.  Superplasticity of zirconia-alumina-spinel nanoceramic composite by spark plasma sintering of plasma sprayed powders , 2005 .

[43]  M. Lombardi,et al.  Microstructural design and elaboration of multiphase ultra-fine ceramics , 2011 .

[44]  Linan An,et al.  Phase Transformation in Nanometer-Sized γ-Alumina by Mechanical Milling , 2005 .

[45]  R. Torrecillas,et al.  Alumina nanocomposites from powder–alkoxide mixtures , 2002 .

[46]  Jiangong Li,et al.  Densification and Grain Growth of Al2O3 Nanoceramics During Pressureless Sintering , 2006 .

[47]  K. Hu,et al.  TiB2/TiC nanocomposite powder fabricated via high energy ball milling , 2001 .

[48]  T. Fang,et al.  Effects of milling and particle size distribution on the sintering behavior and the evolution of the microstructure in sintering powder compacts , 1998 .

[49]  P. Palmero,et al.  Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites , 2009 .

[50]  J. Chevalier,et al.  Effect of initial particle packing on the sintering of nanostructured transition alumina , 2008 .

[51]  L. C. Jonghe,et al.  Microstructure Refinement of Sintered Alumina by a Two‐Step Sintering Technique , 2005 .

[52]  P. Bowen,et al.  Sintering of a transition alumina: effects of phase transformation, powder characteristics and thermal cycle , 1999 .

[53]  D. Uhlmann,et al.  TEM study of boehmite gels and their transformation to α-alumina , 1988 .