An experimental evaluation of non‐rigid registration techniques on Quickbird satellite imagery

In remote sensing, because of the wide diversity of image characteristics (size, spatial and radiometric resolution, terrain relief, observation poses, etc.), image registration methods that work well on certain satellite images may not produce acceptable results for others, requiring more powerful techniques. A variety of registration techniques that account for images with non‐rigid geometric deformations have been proposed, including piecewise (linear or cubic) functions, weighted mean functions, radial basis functions, B‐spline functions, etc. This paper compares three of them: polynomial, piecewise‐linear and thin‐plate‐spline functions, and analyses their performance under a variety of factors: off‐nadir viewing, terrain relief, density of control points, and 3D geometric correction. Our comparison applies on panchromatic QuickBird imagery, both ortho‐ready (as provided by DigitalGlobe) and orthorectified, acquired on different dates, from different observation attitudes, and sensing different land covers: urban area, high‐relief terrain, and a combination of both.

[1]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[2]  K. Novak RECTIFICATION OF DIGITAL IMAGERY , 1992 .

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[5]  Th Toutin,et al.  QuickBird - A Milestone for High Resolution Mapping , 2002 .

[6]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[7]  Manfred Ehlers,et al.  High-precision geometric correction of airborne remote sensing revisited: the multiquadric interpolation , 1994, Remote Sensing.

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  A. Ardeshir Goshtasby,et al.  Piecewise linear mapping functions for image registration , 1986, Pattern Recognit..

[10]  A. Ardeshir Goshtasby,et al.  Registration of images with geometric distortions , 1988 .

[11]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[12]  Paul Aplin,et al.  ISPRS commission VII symposium: remote sensing: from pixels to processes , 2006 .

[13]  H. Opower Multiple view geometry in computer vision , 2002 .

[14]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[15]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[16]  A. Ardeshir Goshtasby,et al.  Piecewise cubic mapping functions for image registration , 1987, Pattern Recognit..

[17]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[18]  Michael Unser,et al.  Fast parametric elastic image registration , 2003, IEEE Trans. Image Process..

[19]  Yongwei Sheng,et al.  Automated georeferencing and orthorectification of Amazon basin-wide SAR mosaics using SRTM DEM data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..