Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density

Abstract Microporous organic polymers with triphenylamine segments were employed as cathode materials for lithium ion batteries. YPTPA with the highest surface area exhibits a discharge plateau at ∼3.6 V vs . Li/Li + , an initial Coulombic efficiency of 96.8% at 50 mA g −1 and a discharge capacity of 105.7 mAh g −1 at 200 mA g −1 . Compared to the homo-coupled polymer of OPTPA with relatively low surface area (66 m 2  g −1 ), SPTPA and YPTPA with higher surface area (544 and 1557 m 2  g −1 , respectively) show enhanced rate performances and energy densities. YPTPA can deliver 97.6 mAh g −1 within less than 3 min at high rate of 2000 mA g −1 and the energy density of 334 Wh kg −1 under an ultrahigh power density of 6816 W kg −1 , while OPTPA only presents 48.2 mAh g −1 at 2000 mA g −1 with an energy density of 155 Wh kg −1 under 6414 W kg −1 . The great improvement in electrochemical properties of SPTPA and YPTPA demonstrates that increasing surface area of polymer cathodes by interweaving the redox-active units into microporous polymer skeleton is an efficient way to develop advanced polymer cathode materials with outstanding electrochemical performance.

[1]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[2]  N. Oyama,et al.  Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density , 1995, Nature.

[3]  C. Lambert,et al.  Intervalence charge-transfer bands in triphenylamine-based polymers , 2003 .

[4]  D. Choi,et al.  Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[6]  X. Ai,et al.  Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries , 2014 .

[7]  Dingcai Wu,et al.  Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. , 2014, Chemical communications.

[8]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[9]  Lihuan Xu,et al.  Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries , 2014 .

[10]  M. Antonietti,et al.  Conjugated porous polymers for energy applications , 2012 .

[11]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[12]  Yunhong Zhou,et al.  Polyimides: promising energy-storage materials. , 2010, Angewandte Chemie.

[13]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[14]  T. Nokami,et al.  Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. , 2012, Journal of the American Chemical Society.

[15]  Qinghai Meng,et al.  Flexible and Binder‐Free Organic Cathode for High‐Performance Lithium‐Ion Batteries , 2014, Advanced materials.

[16]  U. Schubert,et al.  Synthesis, characterization and charge–discharge studies of ferrocene-containing poly(fluorenylethynylene) derivatives as organic cathode materials , 2015 .

[17]  A. Cooper,et al.  Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis , 2013 .

[18]  B. Ellis,et al.  Three‐Dimensional Self‐Supported Metal Oxides for Advanced Energy Storage , 2014, Advanced materials.

[19]  Jun Chen,et al.  Organic Li4C8H2O6 nanosheets for lithium-ion batteries. , 2013, Nano letters.

[20]  Meilin Liu,et al.  Solid Redox Polymerization Electrodes and Their Use in All-Solid-State Batteries , 1990 .

[21]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[22]  Jihyun Hong,et al.  Organic Nanohybrids for Fast and Sustainable Energy Storage , 2014, Advanced materials.

[23]  Haoshen Zhou,et al.  Bipolar porous polymeric frameworks for low-cost, high-power, long-life all-organic energy storage devices , 2014 .

[24]  Xiao-yan Wang,et al.  Bifunctionalized conjugated microporous polymers for carbon dioxide capture , 2015 .

[25]  Markus Antonietti,et al.  Teaching New Tricks to an Old Indicator: pH-Switchable, Photoactive Microporous Polymer Networks from Phenolphthalein with Tunable CO2 Adsorption Power , 2012 .

[26]  Chunsheng Wang,et al.  Self-assembled organic nanowires for high power density lithium ion batteries. , 2014, Nano letters.

[27]  Yuliang Cao,et al.  An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. , 2013, Chemical communications.

[28]  Haoshen Zhou,et al.  Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device , 2013, Nature Communications.

[29]  Ulrich S. Schubert,et al.  Powering up the Future: Radical Polymers for Battery Applications , 2012, Advanced materials.

[30]  M. Armand,et al.  Building better batteries , 2008, Nature.

[31]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[32]  Jun Chen,et al.  Fused Heteroaromatic Organic Compounds for High‐Power Electrodes of Rechargeable Lithium Batteries , 2013 .

[33]  P. Bäuerle,et al.  Star-shaped perylene–oligothiophene–triphenylamine hybrid systems for photovoltaic applications , 2006 .

[34]  C. Deng,et al.  Synthetic optimization of nanostructured Li[Ni1/3Mn1/3Co1/3]O2 cathode material prepared by hydroxide coprecipitation at 273 K , 2010 .

[35]  T. Sakai,et al.  Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries , 2012 .

[36]  Xiao Yang,et al.  Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine. , 2014, Macromolecular rapid communications.

[37]  Jun Liu,et al.  Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. , 2012, Nano letters.

[38]  Zhiqiang Zhu,et al.  All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. , 2014, Journal of the American Chemical Society.

[39]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[40]  Zhaoqi Guo,et al.  Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. , 2011, Angewandte Chemie.

[41]  Haoshen Zhou,et al.  A quinone-based oligomeric lithium salt for superior Li–organic batteries , 2014 .

[42]  A. Nagai,et al.  Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. , 2011, Journal of the American Chemical Society.

[43]  G. Cui,et al.  Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage , 2015 .

[44]  A. Cooper,et al.  Band gap engineering in fluorescent conjugated microporous polymers , 2011 .

[45]  J. Rolland,et al.  Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials , 2015 .

[46]  Xueping Gao,et al.  Li-ion storage and gas adsorption properties of porous polyimides (PIs) , 2014 .

[47]  Chao Wang,et al.  Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.

[48]  Xiqian Yu,et al.  Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group , 2014 .

[49]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[50]  H. X. Yang,et al.  Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries , 2008 .

[51]  Shenmin Zhang,et al.  Effects of Cr doping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries , 2011 .

[52]  K. Krishnamoorthy,et al.  Chemically Reduced Organic Small-Molecule-Based Lithium Battery with Improved Efficiency , 2015 .

[53]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[54]  Yang Liu,et al.  Changing the Behavior of Chromophores from Aggregation‐Caused Quenching to Aggregation‐Induced Emission: Development of Highly Efficient Light Emitters in the Solid State , 2010, Advanced materials.

[55]  Shaohua Zhang,et al.  Li2+xMn1−xPxSi1−xO4/C as novel cathode materials for lithium ion batteries , 2013 .