Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces

The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the 3D incompressible Euler equations, and its dissipative version includes an extra term bearing the operator $(-\Delta)^\alpha$ with $\alpha\in [0,1]$. Existing research appears to indicate the criticality of $\alpha=\frac12$ in the sense that the issue of global existence for the 2D dissipative QG equation becomes extremely difficult when $\alpha\le \frac12$. It is shown here that for any $\alpha\le \frac12$ the 2D dissipative QG equation with an initial datum in the Besov space $B^r_{2,\infty}$ or $B^r_{p,\infty}$ $(p>2)$ possesses a unique global solution if the norm of the datum in these spaces is comparable to $\kappa$, the diffusion coefficient. Since the Sobolev space $H^r$ is embedded in $B^r_{2,\infty}$, a special consequence is the global existence of small data solutions in $H^r$ for any $r>2-2\alpha$.

[1]  Jiahong Wu,et al.  Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic equations , 1997 .

[2]  M. Schonbek,et al.  Asymptotic Behavior to Dissipative Quasi-Geostrophic Flows , 2003, SIAM J. Math. Anal..

[3]  Jiahong Wu,et al.  Dissipative quasi-geostrophic equations with L p data , 2001 .

[4]  Diego Cordoba,et al.  Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.

[5]  P. Constantin,et al.  On the critical dissipative quasi-geostrophic equation , 2001 .

[6]  Raymond T. Pierrehumbert,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[7]  Charles Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001 .

[8]  Dongho Chae,et al.  The quasi-geostrophic equation in the Triebel–Lizorkin spaces , 2003 .

[9]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[10]  L. Berselli Vanishing viscosity limits and long-timebehavior for 2D quasi-geostrophic equations , 2002 .

[11]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[12]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[13]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[14]  Dongho Chae,et al.  Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations , 2003 .

[15]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[16]  Jiahong Wu,et al.  Solutions of the 2D quasi-geostrophic equation in Hölder spaces , 2005 .