Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2

The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to ε-global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation–linearization technique equations, convex multivariable terms, αBB convexifications, and low- and high-dimensional edge-concave aggregations. Cuts are based on both individual equations and collections of nonlinear terms in MIQCQP. Novel contributions of this paper include: development of a corollary to Crama's [Concave extensions for nonlinear 0-1 maximization problems, Math. Program. 61 (1993), pp. 53–60] necessary and sufficient condition for the existence of a cut dominating the termwise relaxation of a bilinear expression; algorithmic descriptions for deriving each class of cut; presentation of a branch-and-cut framework integrating the cuts. Computational results are presented along with comparison of the GloMIQO 2 performance to several state-of-the-art solvers.

[1]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[2]  Nikolaos V. Sahinidis,et al.  Global optimization of general non-convex problems with intermediate bilinear substructures , 2014, Optim. Methods Softw..

[3]  Asgeir Tomasgard,et al.  Decomposition strategy for the stochastic pooling problem , 2012, J. Glob. Optim..

[4]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[5]  James R. Luedtke,et al.  Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..

[6]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[7]  Christodoulos A. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Comput. Chem. Eng..

[8]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[9]  Kurt M. Anstreicher,et al.  On convex relaxations for quadratically constrained quadratic programming , 2012, Math. Program..

[10]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[11]  John L. Klepeis,et al.  Design of peptide analogues with improved activity using a novel de novo protein design approach , 2004 .

[12]  Ambros M. Gleixner,et al.  Learning and Propagating Lagrangian Variable Bounds for Mixed-Integer Nonlinear Programming , 2013, CPAIOR.

[13]  Michael R. Bussieck,et al.  MINLP Solver Software , 2011 .

[14]  George L. Nemhauser,et al.  A branch-and-cut algorithm for nonconvex quadratic programs with box constraints , 2005, Math. Program..

[15]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[16]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[17]  Fabio Tardella,et al.  On a class of functions attaining their maximum at the vertices of a polyhedron , 1989, Discret. Appl. Math..

[18]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[19]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[20]  Christodoulos A. Floudas,et al.  APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes , 2011, Comput. Chem. Eng..

[21]  Gérard Cornuéjols,et al.  Balanced 0-1 Matrices II. Recognition Algorithm , 2001, J. Comb. Theory, Ser. B.

[22]  Christodoulos A. Floudas,et al.  Convex envelopes for edge-concave functions , 2005, Math. Program..

[23]  Pierre Hansen,et al.  Pooling Problem: Alternate Formulations and Solution Methods , 2000, Manag. Sci..

[24]  Christodoulos A. Floudas,et al.  Global optimization of a combinatorially complex generalized pooling problem , 2006 .

[25]  Henry Wolkowicz,et al.  Convex Relaxations of (0, 1)-Quadratic Programming , 1995, Math. Oper. Res..

[26]  I. Karimi,et al.  Improving the robustness and efficiency of crude scheduling algorithms , 2007 .

[27]  Josef Kallrath,et al.  Cutting circles and polygons from area-minimizing rectangles , 2009, J. Glob. Optim..

[28]  Immanuel M. Bomze,et al.  Branch-and-bound approaches to standard quadratic optimization problems , 2002, J. Glob. Optim..

[29]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations , 2011, Math. Program..

[30]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[31]  Thorsten Koch,et al.  Constraint Integer Programming: A New Approach to Integrate CP and MIP , 2008, CPAIOR.

[32]  Duan Li,et al.  Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations , 2011, J. Glob. Optim..

[33]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[34]  Nikolaos V. Sahinidis,et al.  Portfolio optimization for wealth-dependent risk preferences , 2010, Ann. Oper. Res..

[35]  Pedro M. Castro,et al.  Linear program-based algorithm for the optimal design of wastewater treatment systems , 2009 .

[36]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[37]  Panos M. Pardalos,et al.  Test case generators and computational results for the maximum clique problem , 1993, J. Glob. Optim..

[38]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[39]  Pedro M. Castro,et al.  Global optimization of water networks design using multiparametric disaggregation , 2012, Comput. Chem. Eng..

[40]  I. Nowak Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming , 2005 .

[41]  Yves Crama,et al.  Recognition problems for special classes of polynomials in 0–1 variables , 1989, Math. Program..

[42]  C. L. Hamblin You and I , 1972 .

[43]  Fabio Tardella,et al.  A clique algorithm for standard quadratic programming , 2008, Discret. Appl. Math..

[44]  T. Niknam,et al.  A new decomposition approach for the thermal unit commitment problem , 2009 .

[45]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[46]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[47]  Ignacio E. Grossmann,et al.  A Novel Priority-Slot Based Continuous-Time Formulation for Crude-Oil Scheduling Problems , 2009 .

[48]  Donald R. Jones A fully general, exact algorithm for nesting irregular shapes , 2014, J. Glob. Optim..

[49]  Christodoulos A. Floudas,et al.  Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility , 2011, Comput. Chem. Eng..

[50]  Hanif D. Sherali,et al.  New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems , 1997, Oper. Res. Lett..

[51]  Fabio Tardella,et al.  Existence and sum decomposition of vertex polyhedral convex envelopes , 2008, Optim. Lett..

[52]  Linus Schrage,et al.  The global solver in the LINDO API , 2009, Optim. Methods Softw..

[53]  Ignacio E. Grossmann,et al.  A discretization-based approach for the optimization of the multiperiod blend scheduling problem , 2013, Comput. Chem. Eng..

[54]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[55]  Christodoulos A. Floudas,et al.  Continuous‐time modeling and global optimization approach for scheduling of crude oil operations , 2012 .

[56]  Pedro M. Castro,et al.  LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants , 2008 .

[57]  Yves Crama Concave extensions for nonlinear 0–1 maximization problems , 1993, Math. Program..

[58]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[59]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[60]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations , 2010, Math. Program..

[61]  Pedro M. Castro,et al.  An efficient heuristic procedure for the optimal design of wastewater treatment systems , 2007 .

[62]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[63]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[64]  Pedro M. Castro,et al.  Comparison of global optimization algorithms for the design of water-using networks , 2013, Comput. Chem. Eng..

[65]  Samuel Burer,et al.  A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations , 2008, Math. Program..

[66]  Hanif D. Sherali,et al.  A reformulation-convexification approach for solving nonconvex quadratic programming problems , 1995, J. Glob. Optim..

[67]  Christodoulos A. Floudas,et al.  A remark on the GOP algorithm for global optimization , 1993, J. Glob. Optim..

[68]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[69]  Pierre Hansen,et al.  The Largest Small Octagon , 2001, J. Comb. Theory, Ser. A.

[70]  S. Burer,et al.  The MILP Road to MIQCP , 2012 .

[71]  Pedro M. Castro,et al.  Global optimization of bilinear programs with a multiparametric disaggregation technique , 2013, Journal of Global Optimization.

[72]  Michael Jünger,et al.  Box-inequalities for quadratic assignment polytopes , 2001, Math. Program..

[73]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations , 2012, Mathematical Programming.

[74]  Hanif D. Sherali,et al.  A new reformulation-linearization technique for bilinear programming problems , 1992, J. Glob. Optim..

[75]  Richard C. Baliban,et al.  Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 2: Simultaneous Heat and Power Integration , 2010 .

[76]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[77]  Linus Schrage,et al.  Implementation and Testing of a Branch-and-Bound Based Method for Deterministic Global Optimization: Operations Research Applications , 2004 .

[78]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[79]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[80]  George L. Nemhauser,et al.  A polyhedral study of nonconvex quadratic programs with box constraints , 2005, Math. Program..

[81]  Robin Lougee,et al.  The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community , 2003, IBM J. Res. Dev..

[82]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[83]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[84]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[85]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[86]  F. Tardella On the existence of polyhedral convex envelopes , 2004 .

[87]  Timo Berthold,et al.  Extending a CIP framework to solve MIQCPs , 2012 .

[88]  Christodoulos A. Floudas,et al.  A Framework for Globally Optimizing Mixed-Integer Signomial Programs , 2013, Journal of Optimization Theory and Applications.

[89]  I. Androulakis,et al.  Solving long-term financial planning problems via global optimization , 1997 .

[90]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[91]  Oktay Günlük,et al.  A Polytope for a Product of Real Linear Functions in 0/1 Variables , 2012 .

[92]  Pietro Belotti,et al.  Linear Programming Relaxations of Quadratically Constrained Quadratic Programs , 2012, ArXiv.

[93]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[94]  Mark Robinson,et al.  A short-term operational planning model for natural gas production systems† , 2008 .

[95]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[96]  Berç Rustem,et al.  Global Optimization of the Scenario Generation and Portfolio Selection Problems , 2006, ICCSA.

[97]  Warren P. Adams,et al.  Improved Linear Programming-based Lower Bounds for the Quadratic Assignment Proglem , 1993, Quadratic Assignment and Related Problems.

[98]  Christodoulos A. Floudas,et al.  Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints , 2010, Comput. Chem. Eng..

[99]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[100]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[101]  Leo Liberti,et al.  An Exact Reformulation Algorithm for Large Nonconvex NLPs Involving Bilinear Terms , 2006, J. Glob. Optim..

[102]  Ignacio E. Grossmann,et al.  Global optimization for the synthesis of integrated water systems in chemical processes , 2006, Comput. Chem. Eng..

[103]  Ignacio E. Grossmann,et al.  Global superstructure optimization for the design of integrated process water networks , 2011 .

[104]  Timo Berthold,et al.  Analyzing the computational impact of MIQCP solver components , 2012 .

[105]  Klaus Truemper,et al.  Alpha-balanced graphs and matrices and GF(3)-representability of matroids , 1982, J. Comb. Theory, Ser. B.

[106]  Nikolaos V. Sahinidis,et al.  Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs , 2009, Optim. Methods Softw..

[107]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[108]  P. I. Barton,et al.  Stochastic pooling problem for natural gas production network design and operation under uncertainty , 2011 .

[109]  Pan Changchun,et al.  Mixed-Integer Linear Programming Model for Refinery Short-Term Scheduling of Crude Oil Unloading with Inventory Management , 2013 .

[110]  Samuel Burer,et al.  Globally solving nonconvex quadratic programming problems via completely positive programming , 2011, Mathematical Programming Computation.

[111]  Jean-Philippe P. Richard,et al.  KRANNERT GRADUATE SCHOOL OF MANAGEMENT , 2010 .

[112]  Pierre Hansen,et al.  The small octagon with longest perimeter , 2005, J. Comb. Theory, Ser. A.

[113]  Hanif D. Sherali,et al.  Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems , 1990, Oper. Res..