Faster Binary Embeddings for Preserving Euclidean Distances

We propose a fast, distance-preserving, binary embedding algorithm to transform a high-dimensional dataset $\mathcal{T}\subseteq\mathbb{R}^n$ into binary sequences in the cube $\{\pm 1\}^m$. When $\mathcal{T}$ consists of well-spread (i.e., non-sparse) vectors, our embedding method applies a stable noise-shaping quantization scheme to $A x$ where $A\in\mathbb{R}^{m\times n}$ is a sparse Gaussian random matrix. This contrasts with most binary embedding methods, which usually use $x\mapsto \mathrm{sign}(Ax)$ for the embedding. Moreover, we show that Euclidean distances among the elements of $\mathcal{T}$ are approximated by the $\ell_1$ norm on the images of $\{\pm 1\}^m$ under a fast linear transformation. This again contrasts with standard methods, where the Hamming distance is used instead. Our method is both fast and memory efficient, with time complexity $O(m)$ and space complexity $O(m)$. Further, we prove that the method is accurate and its associated error is comparable to that of a continuous valued Johnson-Lindenstrauss embedding plus a quantization error that admits a polynomial decay as the embedding dimension $m$ increases. Thus the length of the binary codes required to achieve a desired accuracy is quite small, and we show it can even be compressed further without compromising the accuracy. To illustrate our results, we test the proposed method on natural images and show that it achieves strong performance.

[1]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[2]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[3]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[4]  Shih-Fu Chang,et al.  Circulant Binary Embedding , 2014, ICML.

[5]  Felix Krahmer,et al.  An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.

[6]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[7]  Mary Wootters,et al.  New constructions of RIP matrices with fast multiplication and fewer rows , 2012, SODA.

[8]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[9]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[10]  C. Sinan Güntürk,et al.  Distributed Noise-Shaping Quantization: I. Beta Duals of Finite Frames and Near-Optimal Quantization of Random Measurements , 2014, ArXiv.

[11]  Shih-Fu Chang,et al.  Fast Orthogonal Projection Based on Kronecker Product , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Daniel M. Kane,et al.  Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.

[13]  Jian Sun,et al.  Sparse projections for high-dimensional binary codes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Rayan Saab,et al.  Fast Binary Embeddings and Quantized Compressed Sensing with Structured Matrices , 2018, Communications on Pure and Applied Mathematics.

[15]  Sjoerd Dirksen,et al.  Fast binary embeddings with Gaussian circulant matrices , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[16]  Constantine Caramanis,et al.  Binary Embedding: Fundamental Limits and Fast Algorithm , 2015, ICML.

[17]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[18]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[19]  Sanjiv Kumar,et al.  Angular Quantization-based Binary Codes for Fast Similarity Search , 2012, NIPS.

[20]  Binarized Johnson-Lindenstrauss embeddings , 2020, ArXiv.

[21]  Nir Ailon,et al.  An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.

[22]  Harvey,et al.  Integer multiplication in time O(n log n) , 2021, Annals of Mathematics.

[23]  Christos Thrampoulidis,et al.  Near-optimal sample complexity bounds for circulant binary embedding , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Florent Perronnin,et al.  High-dimensional signature compression for large-scale image classification , 2011, CVPR 2011.

[25]  Ping Li,et al.  In Defense of Minhash over Simhash , 2014, AISTATS.

[26]  Wei Liu,et al.  Hashing with Graphs , 2011, ICML.

[27]  Seungjin Choi,et al.  On the Optimal Bit Complexity of Circulant Binary Embedding , 2018, AAAI.

[28]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[29]  Daniel M. Kane,et al.  A Derandomized Sparse Johnson-Lindenstrauss Transform , 2010, Electron. Colloquium Comput. Complex..

[30]  Shih-Fu Chang,et al.  An Exploration of Parameter Redundancy in Deep Networks with Circulant Projections , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  Sjoerd Dirksen,et al.  Fast Binary Embeddings with Gaussian Circulant Matrices: Improved Bounds , 2018, Discret. Comput. Geom..

[32]  Sanjiv Kumar,et al.  Binary embeddings with structured hashed projections , 2015, ICML.

[33]  Shih-Fu Chang,et al.  Fast Neural Networks with Circulant Projections , 2015, ArXiv.

[34]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[36]  Svetlana Lazebnik,et al.  Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[37]  Jirí Matousek,et al.  On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.

[38]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[39]  David P. Woodruff,et al.  Low rank approximation and regression in input sparsity time , 2012, STOC '13.

[40]  Yaniv Plan,et al.  Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach , 2012, IEEE Transactions on Information Theory.

[41]  Ping Li,et al.  Hashing Algorithms for Large-Scale Learning , 2011, NIPS.

[42]  Sanjiv Kumar,et al.  Learning Binary Codes for High-Dimensional Data Using Bilinear Projections , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[44]  Jian Sun,et al.  Optimized Product Quantization for Approximate Nearest Neighbor Search , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Svetlana Lazebnik,et al.  Locality-sensitive binary codes from shift-invariant kernels , 2009, NIPS.

[46]  C. S. Güntürk One‐bit sigma‐delta quantization with exponential accuracy , 2003 .