A procedure for a posteriori error estimation for h-p finite element methods
暂无分享,去创建一个
[1] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[2] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[3] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[4] Leszek Demkowicz,et al. Adaptive methods for problems in solid and fluid mechanics , 1986 .
[5] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[6] Leszek Demkowicz,et al. A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .
[7] J. Tinsley Oden,et al. A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis , 1993 .
[8] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[9] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .