Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling

Agglomerated gold nanoparticle clusters embedded in polyelectrolyte films are optically excited, which results in local ablation of material from the polyelectrolyte films and in some cases leads to the formation of a gas bubble. Evidence is given that this process is mediated by superheating of the medium around the excited gold nanoparticle clusters. This process is highly dependent on the medium used. Besides the boiling point, salt and proteins in the medium also affect the formation of gas bubbles. These data demonstrate that the type of medium must be considered when describing light-mediated heating of gold nanoparticle clusters, which are fixed in a matrix surrounded by medium.

[1]  H. Möhwald,et al.  Laser-controllable coatings for corrosion protection. , 2009, ACS nano.

[2]  Wolfgang J Parak,et al.  Laser-induced release of encapsulated materials inside living cells. , 2006, Angewandte Chemie.

[3]  Antonio Turiel,et al.  Nanoparticle-mediated local and remote manipulation of protein aggregation. , 2006, Nano letters.

[4]  Gero Decher,et al.  Multilayer Thin Films , 2002 .

[5]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[7]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[8]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[9]  D. Braun,et al.  Toward self-assembly of nanoparticles on polymeric microshells: near-IR release and permeability. , 2008, ACS nano.

[10]  T. Klar,et al.  DNA Melting in Gold Nanostove Clusters , 2010 .

[11]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[12]  J. Schlenoff,et al.  Factors Controlling the Growth of Polyelectrolyte Multilayers , 1999 .

[13]  A. Urban,et al.  Laser printing single gold nanoparticles. , 2010, Nano letters.

[14]  F. Caruso,et al.  Coated Colloids with Tailored Optical Properties , 2003 .

[15]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[16]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[17]  Younan Xia,et al.  Gold nanostructures: a class of multifunctional materials for biomedical applications. , 2011, Chemical Society reviews.

[18]  A. Turiel,et al.  Gold nanoparticles for selective and remote heating of β-amyloid protein aggregates , 2007 .

[19]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[20]  B. Palpant,et al.  Gold nanoparticle assemblies: Thermal behaviour under optical excitation , 2008 .

[21]  P. Jain,et al.  Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. , 2006, The journal of physical chemistry. B.

[22]  Lars Dähne,et al.  Smart Micro‐ and Nanocontainers for Storage, Transport, and Release , 2001 .

[23]  G. Sukhorukov,et al.  Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[25]  Paul Mulvaney,et al.  Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters , 2000 .

[26]  Rebekah A Drezek,et al.  Near infrared laser‐tissue welding using nanoshells as an exogenous absorber , 2005, Lasers in surgery and medicine.

[27]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[28]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[29]  J. Zhu,et al.  Local temperature pattern in plasmonic gold nanoshell: tuning the heat generation , 2010 .

[30]  Dieter Braun,et al.  The role of metal nanoparticles in remote release of encapsulated materials. , 2005, Nano letters.

[31]  Johannes Schmitt,et al.  New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA , 1993 .

[32]  Gero Decher,et al.  Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials , 2003 .

[33]  H. Möhwald,et al.  Surface-supported multilayers decorated with bio-active material aimed at light-triggered drug delivery. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[34]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[35]  G. Plessen,et al.  Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. , 2006, The Journal of chemical physics.

[36]  Benno Radt,et al.  Optically Addressable Nanostructured Capsules , 2004 .

[37]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[38]  T. Klar,et al.  Gold nanostoves for microsecond DNA melting analysis. , 2008, Nano letters.

[39]  Ashleyj . Welch,et al.  Optical-Thermal Response of Laser-Irradiated Tissue , 1995 .

[40]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[41]  V. Sée,et al.  Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. , 2010, Nano letters.

[42]  N. Scherer,et al.  All-optical patterning of Au nanoparticles on surfaces using optical traps. , 2010, Nano letters.

[43]  Marco Zanella,et al.  Biological applications of gold nanoparticles. , 2008, Chemical Society reviews.

[44]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[45]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[46]  L. Liz‐Marzán,et al.  Linear Assemblies of Silica‐Coated Gold Nanoparticles Using Carbon Nanotubes as Templates , 2004 .

[47]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[48]  Wei Zhang,et al.  Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. , 2006, Nano letters.

[49]  Dmitri O. Lapotko,et al.  Pulsed photothermal heating of the media during bubble generation around gold nanoparticles , 2009 .