The typed λ-calculus is not elementary recursive
暂无分享,去创建一个
[1] Richard Montague,et al. The Proper Treatment of Quantification in Ordinary English , 1973 .
[2] Albert R. Meyer. The inherent computational complexity of theories of ordered sets , 1974 .
[3] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[4] C. R. MANNf. THE CONNECTION BETWEEN EQUIVALENCE OF PROOFS AND CARTESIAN CLOSED CATEGORIES , 1974 .
[5] H. Läuchli. An Abstract Notion of Realizability for Which Intuitionistic Predicate Calculus is Complete , 1970 .
[6] Georg Kreisel,et al. A remark on free choice sequences and the topological completeness proofs , 1958, Journal of Symbolic Logic.
[7] A. Church. The calculi of lambda-conversion , 1941 .
[8] Robin Milner,et al. Fully Abstract Models of Typed lambda-Calculi , 1977, Theor. Comput. Sci..
[9] Helmut Schwichtenberg,et al. Definierbare Funktionen imλ-Kalkül mit Typen , 1975, Archive for Mathematical Logic.
[10] Rasmus Lerdorf,et al. Introduction to combinatory logic , 1972 .
[11] A. Whitehead. An Introduction to Mathematics , 1949, Nature.
[12] A. Grzegorczyk. Some classes of recursive functions , 1964 .
[13] H. Friedman. Equality between functionals , 1975 .
[14] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[15] D. Prawitz. Ideas and Results in Proof Theory , 1971 .
[16] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[17] W. Tait. A realizability interpretation of the theory of species , 1975 .
[18] Alfred Tarski,et al. Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.
[19] Gérard P. Huet,et al. A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..