An extended Butterworth Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media

An extended Butterworth-Van Dyke (EBVD) model with frequency-independent parameters for the characterization of a resonant compound formed by a quartz crystal in contact with a finite viscoelastic layer contacting a semi-infinite viscoelastic medium is extracted by analysis of the lumped element model. The formulation of the EBVD model is compared with the complete expression of the electrical admittance of the loaded quartz derived from the transmission line model (TLM). Relative deviations between them do not exceed 3% around 1% bandwidth near resonance. An extended Martin and Granstaff's model and an explicit expression for the frequency shift that supposes an extension of Kanazawa's model for viscoelastic media are obtained. An analysis of the errors associated with the extraction of shear parameters of the coating for different materials prove that, to obtain an error less than 5% in the shear parameters determination, the viscoelastic contribution, defined as the relative error in the thickness computed from the frequency shift by Sauerbrey equation, must be greater than a limit that depends on Q, which is defined as the ratio of the shear storage modulus (G') to shear loss modulus (G"). In the materials studied polymers in the transition range or in the rubbery state with Q=1 and 10, the viscoelastic contribution must be higher than 15% and 50%, respectively, for a 5% limit error in the shear parameters extraction. A criterion for a practical determination of the appropriate viscoelastic regimes is indicated.

[1]  Stephen J. Martin,et al.  Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading , 1991 .

[2]  A. Robert Hillman,et al.  Viscoelastic characterization of electroactive polymer films at the electrode/solution interface , 1997 .

[3]  C. Durning,et al.  Fluid property investigation by impedance characterization of quartz crystal resonators: Part II: Parasitic effects, viscoelastic fluids , 1999 .

[4]  Stephen J. Martin,et al.  Characterization of a thickness‐shear mode quartz resonator with multiple nonpiezoelectric layers , 1994 .

[5]  P. Hauptmann,et al.  Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  C. White,et al.  Theoretical predictions for the mechanical response of a model quartz crystal microbalance to two viscoelastic media: A thin sample layer and surrounding bath medium , 1999 .

[7]  P. Skládal,et al.  Development of direct piezoelectric biosensor operating in liquid solution for the competitive immunoassay of 2,4-dichlorophenoxyacetic acid. , 1997 .

[8]  W. Göpel,et al.  QCM Operation in Liquids:  Constant Sensitivity during Formation of Extended Protein Multilayers by Affinity. , 1997, Analytical chemistry.

[9]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[10]  R. Lucklum,et al.  Determination of polymer shear modulus with quartz crystal resonators , 1997 .

[11]  K. Kanazawa,et al.  Physical description of a viscoelastically loaded AT‐cut quartz resonator , 1990 .

[12]  A. Bund,et al.  Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators. , 1998, Analytical chemistry.

[13]  V. E. Bottom Introduction to Quartz Crystal Unit Design , 1982 .

[14]  E. Nwankwo,et al.  Fluid property investigation by impedance characterization of quartz crystal resonators: Part I: Methodology, crystal screening, and Newtonian fluids , 1999 .

[15]  J. Therasse,et al.  Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis. , 1998, Biosensors & bioelectronics.

[16]  F. Josse,et al.  Coated-quartz crystal resonator (QCR) sensors for on-line detection of organic contaminants in water , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  R. Cernosek,et al.  Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. , 2000, Analytical chemistry.

[18]  VISCOELASTIC CHANGES IN OS-CONTAINING POLY(ALLYLAMINE) BASED REDOX HYDROGELS FOR AMPEROMETRIC ENZYME ELECTRODES : AN EQCM STUDY , 1999 .

[19]  A. Bund,et al.  Validation of the frequency shift of thickness‐shear‐mode resonators in liquids ‐ determination of the activation energy of viscosity , 1997 .

[20]  P. Vigoureux Piezoelectricity An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals , 1947, Nature.

[21]  C. Durning,et al.  Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids , 1998 .

[22]  R. Cernosek,et al.  Measuring liquid properties with smooth- and textured-surface resonators , 1993 .

[23]  Philip N. Bartlett,et al.  Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films , 1997 .

[24]  Jongmin Kim,et al.  Monitoring changes in the viscoelastic properties of thin polymer films by the quartz crystal resonator , 1999 .

[25]  Jay W. Grate,et al.  Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients , 1997 .

[26]  D. Johannsmann Viscoelastic analysis of organic thin films on quartz resonators , 1999 .

[27]  A. Arnau,et al.  Thickness-shear mode quartz crystal resonators in viscoelastic fluid media , 2000 .

[28]  Joel F. Rosenbaum,et al.  Bulk Acoustic Wave Theory and Devices , 1988 .

[29]  R. Etchenique,et al.  Simultaneous determination of the mechanical moduli and mass of thin layers using nonadditive quartz crystal acoustic impedance analysis , 1999 .

[30]  R. Lucklum,et al.  Response of quartz-crystal resonators to gas and liquid analyte exposure , 1998 .

[31]  Z Gao,et al.  Development of a new kind of dual modulated QCM biosensor. , 1997, Biosensors & bioelectronics.

[32]  P. Bartlett,et al.  In situ characterization of phospholipid coated electrodes , 2000 .

[33]  D. Johannsmann,et al.  Viscoelastic properties of thin films studied with quartz crystal resonators , 1997 .

[34]  Stephen J. Martin,et al.  Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors , 1998 .

[35]  C. Durning,et al.  Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media , 1998 .

[36]  R. Lucklum,et al.  Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors. , 1999, Analytical chemistry.

[37]  R. Etchenique,et al.  Gravimetric measurement in redox polymer electrodes with the EQCM beyond the Sauerbrey limit , 1999 .

[38]  W. Cady,et al.  Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals , 1946 .

[39]  Stephen J. Martin,et al.  Determination of complex shear modulus with thickness shear mode resonators , 1997 .

[40]  Johannsmann,et al.  Viscoelastic properties of thin films probed with a quartz-crystal resonator. , 1992, Physical review. B, Condensed matter.

[41]  J. Gordon,et al.  The oscillation frequency of a quartz resonator in contact with liquid , 1985 .