Power Domination in Circular-Arc Graphs

A set S⊆V is a power dominating set (PDS) of a graph G=(V,E) if every vertex and every edge in G can be observed based on the observation rules of power system monitoring. The power domination problem involves minimizing the cardinality of a PDS of a graph. We consider this combinatorial optimization problem and present a linear time algorithm for finding the minimum PDS of an interval graph if the interval ordering of the graph is provided. In addition, we show that the algorithm, which runs in Θ(nlogn) time, where n is the number of intervals, is asymptotically optimal if the interval ordering is not given. We also show that the results hold for the class of circular-arc graphs.

[1]  D. T. Lee,et al.  Power Domination Problem in Graphs , 2005, COCOON.

[2]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[3]  Lenwood S. Heath,et al.  The PMU Placement Problem , 2005, SIAM J. Discret. Math..

[4]  C. Tang,et al.  Power Domination on Block-cactus Graphs ∗ , 2007 .

[5]  A.G. Phadke,et al.  Phasor measurement unit placement techniques for complete and incomplete observability , 2005, IEEE Transactions on Power Delivery.

[6]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[7]  Gerard J. Chang,et al.  Algorithmic Aspects of Domination in Graphs , 1998 .

[8]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[9]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[10]  A.G. Phadke,et al.  Recent developments in state estimation with phasor measurements , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[11]  Kung-Jui Pai,et al.  Restricted power domination and fault-tolerant power domination on grids , 2010, Discret. Appl. Math..

[12]  D. T. Lee,et al.  k best cuts for circular-arc graphs , 1997, Algorithmica.

[13]  Michael A. Henning,et al.  Placing monitoring devices in electric power networks modelled by block graphs , 2006, Ars Comb..

[14]  Min Zhao,et al.  Power domination in graphs , 2006, Discret. Math..

[15]  Stefan Richter,et al.  Parameterized power domination complexity , 2006, Inf. Process. Lett..

[16]  Michael A. Henning,et al.  A note on power domination in grid graphs , 2006, Discret. Appl. Math..

[17]  Paul Dorbec,et al.  Power Domination in Product Graphs , 2008, SIAM J. Discret. Math..

[18]  Yuanzhan Sun,et al.  Optimal PMU placement for full network observability using Tabu search algorithm , 2006 .

[19]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[20]  Ashkan Aazami,et al.  Domination in graphs with bounded propagation: algorithms, formulations and hardness results , 2008, J. Comb. Optim..

[21]  Min Zhao,et al.  Power domination in block graphs , 2006, Theor. Comput. Sci..

[22]  Wen-Lian Hsu,et al.  Linear Time Algorithms on Circular-Arc Graphs , 1991, Inf. Process. Lett..

[23]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[24]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[25]  J.-A. Jiang,et al.  Transmission network fault location observability with minimal PMU placement , 2006, IEEE Transactions on Power Delivery.

[26]  A.G. Phadke,et al.  Synchronized phasor measurements in power systems , 1993, IEEE Computer Applications in Power.

[27]  Jou-Ming Chang,et al.  A Simple Algorithm for Solving the Power Domination Problem on Grid Graphs Kung – , 2007 .

[28]  Majid Sarrafzadeh,et al.  Minimum Cuts for Circular-Arc Graphs , 1990, SIAM J. Comput..

[29]  A. Abur,et al.  Robust Measurement Design by Placing Synchronized Phasor Measurements on Network Branches , 2010, IEEE Transactions on Power Systems.

[30]  Jochen Harant,et al.  On Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[31]  Henning Fernau,et al.  Power Domination in O*(1.7548n) Using Reference Search Trees , 2008, ISAAC.

[32]  T. Baldwin,et al.  Power system observability with minimal phasor measurement placement , 1993 .

[33]  Dennis J. Brueni Minimal PMU placement for graph observability: a decomposition approach , 1993 .

[34]  Ashkan Aazami,et al.  Approximation Algorithms and Hardness for Domination with Propagation , 2007, SIAM J. Discret. Math..

[35]  Rolf Niedermeier,et al.  Improved Algorithms and Complexity Results for Power Domination in Graphs , 2005, FCT.

[36]  Vahid Madani,et al.  Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks , 2011, Proceedings of the IEEE.

[37]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.