Soft Biosensor Systems Using Flexible and Stretchable Electronics Technology

We will review the recent progresses of large-area, ultraflexible, and ultrasoft electronic sensors. This chapter focuses on integration technologies of thin-film, ultraflexible electronics comprising ultrasoft gel electrodes, thin-film amplifier, Si-LSI wireless platform, thin-film battery, and information engineering, which are imperceptible active sensors. Here we would like to demonstrate the applications of the patch-type wearable biosignal sensors including brain wave (Electroencephalogram: EEG) monitoring from a forehead. Furthermore, this chapter will review the technologies for realizing the new era of electronic system, that is, Internet of Things (IoT.)

[1]  T. Someya,et al.  Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation , 2011, IEEE Electron Device Letters.

[2]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[3]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[4]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[5]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[6]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[7]  Takao Someya,et al.  1 $\mu$m-Thickness Ultra-Flexible and High Electrode-Density Surface Electromyogram Measurement Sheet With 2 V Organic Transistors for Prosthetic Hand Control , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[8]  M. Takamiya,et al.  Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure , 2012, IEEE Transactions on Electron Devices.

[9]  T. Someya,et al.  A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. , 2007, Nature materials.

[10]  Nicolas Wichmann,et al.  Electrical characterization of In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate under mechanical bending conditions , 2013 .

[11]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[12]  Friedrich C Simmel,et al.  Programming the dynamics of biochemical reaction networks. , 2013, ACS nano.

[13]  P. H. Lau,et al.  Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. , 2013, Nano letters.

[14]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[15]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[16]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[17]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[18]  M. Nogi,et al.  Printable and Stretchable Conductive Wirings Comprising Silver Flakes and Elastomers , 2011, IEEE Electron Device Letters.

[19]  P. Leleux,et al.  High transconductance organic electrochemical transistors , 2013, Nature Communications.

[20]  Deji Akinwande,et al.  Multi-finger flexible graphene field effect transistors with high bendability , 2012 .

[21]  S. Koswatta,et al.  GIDL in Doped and Undoped FinFET Devices for Low-Leakage Applications , 2013, IEEE Electron Device Letters.

[22]  Sigurd Wagner,et al.  Ultraflexible amorphous silicon transistors made with a resilient insulator , 2010 .

[23]  S. Wagner,et al.  Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity , 2012, Advanced functional materials.

[24]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.