Thermal conductivity of silicon nanowire arrays with controlled roughness

A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction.

[1]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[2]  Xiuling Li,et al.  Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics , 2012 .

[3]  John E. Bowers,et al.  Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices , 2012, Journal of Electronic Materials.

[4]  Sanjiv Sinha,et al.  Room-temperature phonon boundary scattering below the Casimir limit , 2011 .

[5]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[6]  O. Hulko,et al.  Probing the phonon confinement in ultrasmall silicon nanocrystals reveals a size-dependent surface energy , 2011 .

[7]  Natalio Mingo,et al.  Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit , 2011, 1103.3601.

[8]  Eric A Shaner,et al.  Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. , 2011, Nano letters.

[9]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[10]  Karma R. Sawyer,et al.  Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. , 2010, Nano letters.

[11]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[12]  N. Fang,et al.  Non-lithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[13]  Xiao Liu,et al.  Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition , 2010 .

[14]  Lars Samuelson,et al.  Thermal conductance of InAs nanowire composites. , 2009, Nano letters.

[15]  P. Yang,et al.  Single crystalline mesoporous silicon nanowires. , 2009, Nano letters.

[16]  Richard G. Blair,et al.  Nanostructured Bulk Silicon as an Effective Thermoelectric Material , 2009 .

[17]  J. E. Mark Polymer Data Handbook , 2009 .

[18]  T. Oates,et al.  Combinatorial surface-enhanced raman spectroscopy and spectroscopic ellipsometry of silver Island films , 2009 .

[19]  Giulia Galli,et al.  Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.

[20]  Arthur C. Gossard,et al.  Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors , 2009 .

[21]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[22]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[23]  Xuan Zheng,et al.  Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. , 2008, The Review of scientific instruments.

[24]  A. Majumdar,et al.  Enhanced Thermoelectric Performance in Rough Silicon Nanowires , 2008 .

[25]  D. Cahill,et al.  Effects of high carrier densities on phonon and carrier lifetimes in Si by time-resolved anti-Stokes Raman scattering , 2007 .

[26]  B. Degroote,et al.  Quantitative characterization of the surface morphology using a height difference correlation function , 2006 .

[27]  P. Eklund,et al.  Confined phonons in Si nanowires. , 2005, Nano letters.

[28]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[29]  John Robertson,et al.  Raman spectroscopy of silicon nanowires , 2003 .

[30]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[31]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[32]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[33]  D. Cahill,et al.  Thermal conductivity and sound velocities of hydrogen-silsesquioxane low-k dielectrics , 2002 .

[34]  M. Konuma,et al.  Isotope effects in elemental semiconductors: a Raman study of silicon , 2001 .

[35]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[36]  D. Cahill,et al.  Heat transport in micron thick a-Si: H films , 1995 .

[37]  Fred H. Pollak,et al.  Effect of static uniaxial stress on the Raman spectrum of silicon , 1993 .

[38]  L. Weber,et al.  Transport properties of silicon , 1991 .

[39]  T. Jenkins,et al.  The characterisation of porous silicon by Raman spectroscopy , 1988 .

[40]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[41]  Jose Menendez,et al.  Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α − S n : Anharmonic effects , 1984 .

[42]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[43]  Jerome J. Cuomo,et al.  Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering , 1977 .

[44]  Humphrey J. Maris,et al.  Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime , 1970 .

[45]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[46]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[47]  Mehdi Asheghi,et al.  Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers , 2006 .