A Fast Finite-Difference Method for Micromagnetics Using the Magnetic Scalar Potential

We propose a method for the stray-field computation of ferromagnetic microstructures via the magnetic scalar potential. The scalar potential is computed using the convolution theorem and the fast Fourier transform. For the discrete convolution an analytical expression for the scalar potential of a uniformly magnetized cuboid is presented. A performance gain of up to 55% compared to common simulation codes is achieved and the memory consumption is reduced by 30%. Since the stray-field computation is the most time consuming part of micromagnetic simulations, this performance gain strongly influences the overall performance. The low memory consumption allows simulations with a high number of simulation cells. This enables simulations of large systems like arrays of coupled magnetic vortices or simulations with high spatial resolution. In conjunction with modern hardware, simulations of microstructures with atomic resolution become feasible.

[1]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[2]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[3]  Guido Meier,et al.  Harmonic oscillator model for current-and field-driven magnetic vortices , 2007, 0710.0532.

[4]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[5]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[6]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.

[7]  A. Hubert,et al.  Optimizing stray field computations in finite-element micromagnetics , 1994 .

[8]  Shaojing Li,et al.  Graphics Processing Unit Accelerated $O(N)$ Micromagnetic Solver , 2010, IEEE Transactions on Magnetics.

[9]  M.J. Donahue,et al.  Parallelizing a Micromagnetic Program for Use on Multiprocessor Shared Memory Computers , 2009, IEEE Transactions on Magnetics.

[10]  Wyn Williams,et al.  Three-dimensional micromagnetic calculations for magnetite using FFT , 1996 .

[11]  A. Vansteenkiste,et al.  MuMax: A new high-performance micromagnetic simulation tool , 2011, 1102.3069.

[12]  Attila Kakay,et al.  Speedup of FEM Micromagnetic Simulations With Graphical Processing Units , 2010, IEEE Transactions on Magnetics.

[13]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[14]  Hiroaki Muraoka,et al.  Micromagnetic Analysis of Shielded Write Heads Using Symmetric Multiprocessing Systems , 2010, IEEE Transactions on Magnetics.

[15]  W. Williams,et al.  A generalization of the demagnetizing tensor for nonuniform magnetization , 1993 .

[16]  Sumei Wang,et al.  Micromagnetics of Ferromagnetic Nano-Devices Using the Fast Fourier Transform Method , 2009, IEEE Transactions on Magnetics.

[17]  T. Matsuo,et al.  Demagnetizing Field in Micromagnetic Simulation Under Periodic Boundary Conditions , 2010, IEEE Transactions on Magnetics.

[18]  R. Engel-Herbert,et al.  Calculation of the magnetic stray field of a uniaxial magnetic domain , 2005 .

[19]  A. Hubert,et al.  Solving Micromagnetic Problems. Towards an Optimal Numerical Method , 1993 .