Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes

[1]  Philipp Otto,et al.  webKnossos: efficient online 3D data annotation for connectomics , 2017, Nature Methods.

[2]  Nathaniel N Urban,et al.  Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus , 2016, The Journal of Neuroscience.

[3]  A. Wanner,et al.  Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb , 2016, Nature Neuroscience.

[4]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[5]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.

[6]  Louis K. Scheffer,et al.  Synaptic circuits and their variations within different columns in the visual system of Drosophila , 2015, Proceedings of the National Academy of Sciences.

[7]  Peter Mombaerts,et al.  Multiplex assessment of the positions of odorant receptor-specific glomeruli in the mouse olfactory bulb by serial two-photon tomography , 2015, Proceedings of the National Academy of Sciences.

[8]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[9]  W. Denk,et al.  High-resolution whole-brain staining for electron microscopic circuit reconstruction , 2015, Nature Methods.

[10]  Matthew R. Angle,et al.  Penetration of cell membranes and synthetic lipid bilayers by nanoprobes. , 2014, Biophysical journal.

[11]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[12]  Takeshi Imai,et al.  SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction , 2013, Nature Neuroscience.

[13]  Yuhong Cao,et al.  Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. , 2013, ACS nano.

[14]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[15]  Tatsuya Yamasoba,et al.  Odorant Response Properties of Individual Neurons in an Olfactory Glomerular Module , 2013, Neuron.

[16]  Andreas T. Schaefer,et al.  Two Distinct Channels of Olfactory Bulb Output , 2012, Neuron.

[17]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[18]  Kei M. Igarashi,et al.  Parallel Mitral and Tufted Cell Pathways Route Distinct Odor Information to Different Targets in the Olfactory Cortex , 2012, The Journal of Neuroscience.

[19]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[20]  Matthew E. Phillips,et al.  Respiration Drives Network Activity and Modulates Synaptic and Circuit Processing of Lateral Inhibition in the Olfactory Bulb , 2012, The Journal of Neuroscience.

[21]  Hitoshi Sakano,et al.  How is the olfactory map formed and interpreted in the mammalian brain? , 2011, Annual review of neuroscience.

[22]  Brian E. Henslee,et al.  Electroporation dependence on cell size: optical tweezers study. , 2011, Analytical chemistry.

[23]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[24]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[25]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[26]  Matthew E. Phillips,et al.  Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated , 2011, Front. Neural Circuits..

[27]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[28]  T. Kosaka,et al.  “Interneurons” in the olfactory bulb revisited , 2011, Neuroscience Research.

[29]  Nathaniel N. Urban,et al.  A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits , 2010, Journal of Neuroscience Methods.

[30]  C. Greer,et al.  Age-induced disruption of selective olfactory bulb synaptic circuits , 2010, Proceedings of the National Academy of Sciences.

[31]  Yuchio Yanagawa,et al.  Molecular Identity of Periglomerular and Short Axon Cells , 2010, The Journal of Neuroscience.

[32]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[33]  K. Obata,et al.  Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors , 2009, Neuroscience.

[34]  Zhishang Zhou,et al.  Intrabulbar Projecting External Tufted Cells Mediate a Timing-Based Mechanism That Dynamically Gates Olfactory Bulb Output , 2008, The Journal of Neuroscience.

[35]  Zoltan Nusser,et al.  Distinct Deep Short-Axon Cell Subtypes of the Main Olfactory Bulb Provide Novel Intrabulbar and Extrabulbar GABAergic Connections , 2008, The Journal of Neuroscience.

[36]  Damijan Miklavčič,et al.  Variability of the Minimal Transmembrane Voltage Resulting in Detectable Membrane Electroporation , 2008, Electromagnetic biology and medicine.

[37]  Owe Orwar,et al.  Numerical calculations of single-cell electroporation with an electrolyte-filled capillary. , 2007, Biophysical journal.

[38]  M. T. Shipley,et al.  Quantitative analysis of neuronal diversity in the mouse olfactory bulb , 2007, The Journal of comparative neurology.

[39]  Shin Nagayama,et al.  In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits , 2007, Neuron.

[40]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[41]  George J Augustine,et al.  Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon , 2006, Brain cell biology.

[42]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[43]  Gordon M Shepherd,et al.  Viral tracing identifies distributed columnar organization in the olfactory bulb , 2006, Proceedings of the National Academy of Sciences.

[44]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[45]  P. Reier,et al.  Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[46]  Lawrence C Katz,et al.  Functional Topography of Connections Linking Mirror-Symmetric Maps in the Mouse Olfactory Bulb , 2003, Neuron.

[47]  Owe Orwar,et al.  Single-cell electroporation. , 2003, Current opinion in biotechnology.

[48]  Lawrence C. Katz,et al.  Odorant receptors instruct functional circuitry in the mouse olfactory bulb , 2002, Nature.

[49]  Minmin Luo,et al.  Response Correlation Maps of Neurons in the Mammalian Olfactory Bulb , 2001, Neuron.

[50]  D. Restrepo,et al.  Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb , 2001, The Journal of comparative neurology.

[51]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[52]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[53]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[54]  Dhanistha Panyasak,et al.  Circuits , 1995, Annals of the New York Academy of Sciences.

[55]  M. T. Shipley,et al.  Intrabulbar associational system in the rat olfactory bulb comprises cholecystokinin‐containing tufted cells that synapse onto the dendrites of GABAergic granule cells , 1994, The Journal of comparative neurology.

[56]  J Teissié,et al.  An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. , 1993, Biophysical journal.

[57]  Nathalie Buonviso,et al.  Mitral cell‐to‐glomerulus connectivity: An HRP study of the orientation of mitral cell apical dendrites , 1991, The Journal of comparative neurology.

[58]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[59]  J W Scott,et al.  Cytochrome oxidase staining marks dendritic zones of the rat olfactory bulb external plexiform layer , 1988, The Journal of comparative neurology.

[60]  J. Royet,et al.  Morphometric study of the glomerular population in the mouse olfactory bulb: Numerical density and size distribution along the rostrocaudal axis , 1988, The Journal of comparative neurology.

[61]  G. Eagleson,et al.  The distribution of the size and number of mitral cells in the olfactory bulb of the rat. , 1985, Journal of anatomy.

[62]  E Orona,et al.  Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb , 1984, The Journal of comparative neurology.

[63]  K Kishi,et al.  Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb , 1984, The Journal of comparative neurology.

[64]  K Kishi,et al.  Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb , 1983, The Journal of comparative neurology.

[65]  E Orona,et al.  Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb , 1983, The Journal of comparative neurology.

[66]  F. Macrides,et al.  Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamster , 1982, The Journal of comparative neurology.

[67]  T. Powell,et al.  The synaptology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[68]  W. Hamilton,et al.  Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. , 1968, Biochimica et biophysica acta.

[69]  W. Hamilton,et al.  Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts , 1967 .

[70]  William J. Schroeder,et al.  Overview of Visualization , 2005, The Visualization Handbook.

[71]  T. Powell,et al.  The morphology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[72]  S. Cajal,et al.  Histology of the Nervous System , 1911 .