High-Resolution Kelvin Probe Force Microscopy Imaging of Interface Dipoles and Photogenerated Charges in Organic Donor-Acceptor Photovoltaic Blends.

We present noncontact atomic force microscopy and Kelvin probe force microscopy studies of nanophase segregated photovoltaic blends based on an oligothiophene-fluorenone oligomer and [6,6]-phenyl C70 butyric acid methyl ester. We carried out a complete analysis of the influence of the tip-surface interaction regime on the topographic, in-dark contact potential and surface photovoltage contrasts. It is demonstrated that an optimal lateral resolution is achieved for all channels below the onset of a contrast in the damping images. With the support of electrostatic simulations, it is shown that in-dark contact potential difference contrasts above subsurface acceptor clusters are consistent with an uneven distribution of permanent charges at the donor-acceptor interfaces. A remarkable dependence of the surface photovoltage magnitude with respect to the tip-surface distance is evidenced and attributed to a local enhancement of the electromagnetic field at the tip apex.

[1]  P. Heremans,et al.  On the interface dipole at the pentacene-fullerene heterojunction : A theoretical study , 2010 .

[2]  Yongfang Li,et al.  Single‐Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency , 2015, Advanced materials.

[3]  H. Hamann,et al.  Near-field fluorescence imaging by localized field enhancement near a sharp probe tip , 2000 .

[4]  T. Ujihara,et al.  Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy , 2008 .

[5]  T. Sassa,et al.  In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices. , 2014, ACS applied materials & interfaces.

[6]  P. Jelínek,et al.  New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. , 2009, Physical review letters.

[7]  M. Loi,et al.  Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative , 2007 .

[8]  M. Wienk,et al.  Scanning Kelvin Probe Microscopy on Bulk Heterojunction Polymer Blends , 2009 .

[9]  D. Mariolle,et al.  Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy , 2014, Nanotechnology.

[10]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[11]  B. Grévin,et al.  Fluorenone core donor–acceptor–donor π-conjugated molecules end-capped with dendritic oligo(thiophene)s: synthesis, liquid crystalline behaviour, and photovoltaic applications , 2011 .

[12]  Nicholas A. Klymyshyn,et al.  Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy , 2003 .

[13]  A. Foster,et al.  Understanding the atomic-scale contrast in Kelvin probe force microscopy. , 2009, Physical review letters.

[14]  M. Lux‐Steiner,et al.  Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum. , 2009, The Review of scientific instruments.

[15]  M. Raschke,et al.  Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light Scattering, Tip−Sample Coupling, and Near-Field Enhancement , 2008 .

[16]  S. Beaupré,et al.  The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications , 2014 .

[17]  D. Anselmetti,et al.  Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin , 2013, Beilstein journal of nanotechnology.

[18]  Ching-Fuh Lin,et al.  Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices. , 2010, Nanoscale.

[19]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[20]  Klaus Dickmann,et al.  Field enhancement of optical radiation in the nearfield of scanning probe microscope tips , 1998 .

[21]  Jan Paskarbeit,et al.  Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment , 2009 .

[22]  B. Grévin,et al.  Local contact potential difference of molecular self-assemblies investigated by Kelvin probe force microscopy , 2011 .

[23]  D. Théron,et al.  Calculating Kelvin force microscopy signals from static force fields , 2010 .

[24]  Xiaoyang Zhu,et al.  Electronic Structure and Dynamics at Organic Donor/Acceptor Interfaces , 2010 .

[25]  David Beljonne,et al.  Energetics of Electron–Hole Separation at P3HT/PCBM Heterojunctions , 2013 .

[26]  D. Kern,et al.  Gold nanocone near-field scanning optical microscopy probes. , 2011, ACS nano.

[27]  B. Grévin,et al.  Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy. , 2010, Nano letters.

[28]  D. Ginger,et al.  Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics. , 2014, ACS nano.

[29]  M. Lux‐Steiner,et al.  Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy , 2008, Nanotechnology.

[30]  John R. Tumbleston,et al.  On the role of intermixed phases in organic photovoltaic blends , 2013 .

[31]  A. Goñi,et al.  Influence of the relative molecular orientation on interfacial charge-transfer excitons at donor/acceptor nanoscale heterojunctions , 2014 .

[32]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[33]  H. Sirringhaus,et al.  Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. , 2005, Nano letters.

[34]  Y. Geng,et al.  Contrast formation in Kelvin probe force microscopy of single π-conjugated molecules. , 2014, Nano letters.

[35]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[36]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[37]  C. Frisbie,et al.  Determination of quasi-Fermi levels across illuminated organic donor/acceptor heterojunctions by Kelvin probe force microscopy. , 2011, Journal of the American Chemical Society.

[38]  T. Glatzel,et al.  Analytical Approach to the Local Contact Potential Difference on (001) Ionic Surfaces:~Implications for Kelvin Probe Force Microscopy , 2008, 0807.1431.

[39]  M. Förster,et al.  Probing of optical near-fields by electron Rescattering on the 1 nm scale. , 2012, Nano letters.

[40]  N. S. Sariciftci,et al.  Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. , 2005, Nano letters.

[41]  B. Grévin,et al.  Correct height measurements by Kelvin probe force microscopy: Poly(3-dodecylthiophene) on highly oriented pyrolytic graphite , 2013 .

[42]  J. Cornil,et al.  Quantum‐Chemical Characterization of the Origin of Dipole Formation at Molecular Organic/Organic Interfaces , 2009 .

[43]  W. R. Salaneck,et al.  Electronic structure of hybrid interfaces for polymer-based electronics , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.