Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm

ABSTRACT This article presents a novel framework for the multi-objective optimization of offshore renewable energy mooring systems using a random forest based surrogate model coupled to a genetic algorithm. This framework is demonstrated for the optimization of the mooring system for a floating offshore wind turbine highlighting how this approach can aid in the strategic design decision making for real-world problems faced by the offshore renewable energy sector. This framework utilizes validated numerical models of the mooring system to train a surrogate model, which leads to a computationally efficient optimization routine, allowing the search space to be more thoroughly searched. Minimizing both the cost and cumulative fatigue damage of the mooring system, this framework presents a range of optimal solutions characterizing how design changes impact the trade-off between these two competing objectives.

[1]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[2]  John Ringwood,et al.  Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review , 2017 .

[3]  J. Won,et al.  7th World Congresses of Structural and Multidisciplinary Optimization , 2005 .

[4]  Beatriz Souza Leite Pires de Lima,et al.  Artificial Neural Networks for the analysis of spreadmooring configurations for floating production systems , 2016 .

[5]  Philipp R. Thies,et al.  Development of a Multi-Objective Genetic Algorithm for the Design of Offshore Renewable Energy Systems , 2017 .

[6]  Spyros A. Mavrakos,et al.  Comparative study on mooring line dynamic loading , 1999 .

[7]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[8]  José Augusto Baranauskas,et al.  How Many Trees in a Random Forest? , 2012, MLDM.

[9]  James Large,et al.  The Great Time Series Classification Bake Off: An Experimental Evaluation of Recently Proposed Algorithms. Extended Version , 2016, ArXiv.

[10]  Lars Johanning,et al.  Mooring line fatigue damage evaluation for floating marine energy converters: Field measurements and prediction , 2014 .

[11]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .

[12]  R. Cazacu Comparative Study between the Improved Implementation of 3 Classic Mutation Operators for Genetic Algorithms , 2017 .

[13]  Yacine Rezgui,et al.  Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption , 2017 .

[14]  Luiz Fernando Martha,et al.  Mooring Pattern Optimization using Genetic Algorithms , 2005 .

[15]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[18]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[19]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[20]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[21]  Constantin F. Aliferis,et al.  A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification , 2008, BMC Bioinformatics.

[22]  Philipp R. Thies,et al.  Multi-Objective Optimization of Mooring Systems for Offshore Renewable Energy , 2017 .

[23]  Kaisa Miettinen,et al.  A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization , 2018, IEEE Transactions on Evolutionary Computation.

[24]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[25]  P. Thies,et al.  Comparing Frequency and Time Domain Simulations for Geometry Optimization of a Floating Offshore Wind Turbine Mooring System , 2018, ASME 2018 1st International Offshore Wind Technical Conference.

[26]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[27]  Chao Lan,et al.  Anomaly Detection , 2018, Encyclopedia of GIS.

[28]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[29]  Jon Hardwick,et al.  A comprehensive assessment of the applicability of available and proposed offshore mooring and foundation technologies and design tools for array applications , 2014 .

[30]  Jens Peter Kofoed,et al.  Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters , 2018 .

[31]  Tapabrata Ray,et al.  Multi-Objective Optimization With Multiple Spatially Distributed Surrogates , 2016 .

[32]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  Paolo Vezza,et al.  A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers , 2013 .

[34]  George Kourakos,et al.  Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models , 2009 .

[35]  Francesco Ferri,et al.  Assessment of Available Numerical Tools for Dynamic Mooring Analysis: WP1.2 & M1 , 2017 .

[36]  C. Amzallag,et al.  Standardization of the rainflow counting method for fatigue analysis , 1994 .

[37]  Zong Woo Geem,et al.  COST OPTIMIZED FPSO MOORING DESIGN VIA HARMONY SEARCH , 2016 .

[38]  M. Shafieefar,et al.  Mooring optimization of floating platforms using a genetic algorithm , 2007 .

[39]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[40]  Andreas Müller,et al.  Introduction to Machine Learning with Python: A Guide for Data Scientists , 2016 .

[41]  T. Ray,et al.  A framework for design optimization using surrogates , 2005 .

[42]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[43]  Beatriz Souza Leite Pires de Lima,et al.  ANN-based surrogate models for the analysis of mooring lines and risers , 2013 .

[44]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[45]  S. D. Weller,et al.  Reducing Reliability Uncertainties for Marine Renewable Energy , 2015 .

[46]  Jason Jonkman,et al.  Definition of the Semisubmersible Floating System for Phase II of OC4 , 2014 .

[47]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[48]  Carl Horst Albrecht,et al.  Toward a methodology for the optimal design of mooring systems for floating offshore platforms using evolutionary algorithms , 2016 .

[49]  I. Rychlik A new definition of the rainflow cycle counting method , 1987 .

[50]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[51]  F J Bruen,et al.  MOORING LINE DYNAMICS: COMPARISON OF TIME DOMAIN, FREQUENCY DOMAIN, AND QUASI-STATIC ANALYSES , 1991 .

[52]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[53]  Kostas F. Lambrakos,et al.  Prediction of Offshore Platform Mooring Line Tensions Using Artificial Neural Network , 2017 .

[54]  Josh Cutler,et al.  Introduction to Machine Learning with Python , 2020, Textbooks on Political Analysis.

[55]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[56]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[57]  Lars Johanning,et al.  Mooring design approach for wave energy converters , 2006 .

[58]  Zong Woo Geem,et al.  Mooring Cost Optimization via Harmony Search , 2007 .

[59]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[60]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[61]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.