Estimation of parameters of parallelism model with elliptically distributed errors

In this paper we consider some improved estimators of the intercept and slope parameters in a parallelism model with errors belonging to a sub-class of elliptically contoured distributions. We derive the exact bias, MSE matrices and quadratic risk expressions for these estimators. It is shown that the dominance properties of these estimators are the same as under normal theory. Further, it is shown that the shrinkage factor of the Stein estimators is robust with respect to the regression parameters and unknown mixing distributions.

[1]  Shahjahan Khan,et al.  Shrinkage estimation of the slope parameters of two parallel regression lines under uncertain prior information , 2006, Model. Assist. Stat. Appl..

[2]  Shahjahan Khan Estimation of parameters of the simple multivariate linear model with student-t errors , 2005 .

[3]  Muni S. Srivastava,et al.  Stein estimation under elliptical distributions , 1989 .

[4]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[5]  Kai-Tai Fang,et al.  Maximum‐likelihood estimates and likelihood‐ratio criteria for multivariate elliptically contoured distributions , 1986 .

[6]  Rand R. Wilcox,et al.  The statistical implications of pre-test and Stein-rule estimators in econometrics , 1978 .

[7]  A. Zellner Bayesian and Non-Bayesian Analysis of the Regression Model with Multivariate Student- t Error Terms , 1976 .

[8]  Arjun K. Gupta,et al.  Elliptically contoured models in statistics , 1993 .

[9]  Mohammad Arashi,et al.  Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression , 2008 .

[10]  P. K. Sen,et al.  Multivariate Analysis V. , 1982 .

[11]  A. K. Md. Ehsanes Saleh,et al.  Theory of preliminary test and Stein-type estimation with applications , 2006 .

[12]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[13]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[14]  Shahjahan Khan Estimation of the Parameters of two Parallel Regression Lines Under Uncertain Prior Information , 2003 .

[15]  Reinaldo B. Arellano-Valle,et al.  Predictivistic characterizations of multivariate student- t models , 2003 .

[16]  Aman Ullah,et al.  On the Robustness of LM, LR, and W Tests in Regression Models , 1984 .

[17]  K. Chu Estimation and decision for linear systems with elliptical random processes , 1972, CDC 1972.