Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data

Abstract Syrtis Major Planum is a volcanic plain dominated by lava flows. High resolution stereo camera (HRSC) images of the northern Syrtis Major region display erosional features such as grooves, teardrop-shaped islands and valleys. These landforms are characteristics of outflow channels seen on Mars, therefore implying that a flood event took place in this region. The flow of 100 km long and a few kilometer wide followed the local slopes in most locations. Maximum flood discharges estimated from images and topography vary from about 0.3×106 to 8×106 m3/s, and therefore are in the range of terrestrial mega-floods in the Scablands or Lake Bonneville. In North Syrtis Major, the relationships with surrounding lava flows and the timing of the flood coeval to Syrtis Major volcanic activity suggest that it could be related to the subsurface water discharge mobilized by the volcanic activity. The proximity of Noachian age basement rocks 20 km away from the flood and below lava flows might have played a role in its formation and water presence.

[1]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[2]  M. Spiegel,et al.  Hochauflösende Digitale Geländemodelle der Marsoberfläche auf der Grundlage von Mars Express HRSC Daten , 2005 .

[3]  M. Malin,et al.  Flow rates and duration within Kasei Valles, Mars: Implications for the formation of a Martian Ocean , 1999 .

[4]  G. Neukum,et al.  formation and evolution of the chaotic terrains by subsidence and magmatism : Hydraotes Chaos, Mars. , 2008 .

[5]  P. Allen,et al.  Earth Surface Processes , 1997 .

[6]  Virginia C. Gulick,et al.  Channels and valley networks. , 1992 .

[7]  V. Baker Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington , 1973 .

[8]  Jim E. O'Connor,et al.  Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood , 1993 .

[9]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[10]  A. McEwen,et al.  Recent aqueous floods from the Cerberus Fossae, Mars , 2002 .

[11]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[12]  T. Watters Compressional tectonism on Mars , 1993 .

[13]  J. Mustard,et al.  Mineralogical structure of the subsurface of Syrtis Major from OMEGA observations of lobate ejecta blankets , 2007 .

[14]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[15]  P. Komar Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth , 1979 .

[16]  J. Mustard,et al.  Martian Surface Mineralogy from OMEGA/MEx: Global mineral maps , 2006 .

[17]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[18]  R. Phillips,et al.  Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars , 2006 .

[19]  V. Baker,et al.  Martian channel morphology - Maja and Kasei Valles , 1979 .

[20]  M. A. Ivanov,et al.  Major episodes of the hydrologic history in the region of Hesperia Planum, Mars , 2005 .

[21]  J. Head,et al.  Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars , 2004 .

[22]  Michael H. Carr,et al.  Formation of Martian flood features by release of water from confined aquifers , 1979 .

[23]  M. Malin,et al.  Sapping processes and the development of theater-headed valley networks on the Colorado Plateau , 1985 .

[24]  N. Mangold,et al.  Thermal properties of lobate ejecta in Syrtis Major, Mars: Implications for the mechanisms of formation , 2005 .

[25]  Michael H. Carr The Surface of Mars , 1981 .

[26]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[27]  J. Head,et al.  Syrtis Major and Isidis Basin contact: Morphological and topographic characteristics of Syrtis Major lava flows and material of the Vastitas Borealis Formation , 2003 .

[28]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[29]  J. Dohm,et al.  Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars , 2005 .

[30]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[31]  P. Allemand,et al.  Chronology of compressional deformation on Mars: evidence for a single and global origin , 2000 .

[32]  P. Komar The Lemniscate Loop: Comparisons with the Shapes of Streamlined Landforms , 1984, The Journal of Geology.

[33]  P. Allemand,et al.  Wrinkle ridges of Mars: structural analysis and evidence for shallow deformation controlled by ice-rich décollements , 1998 .

[34]  N. Coleman Martian megaflood‐triggered chaos formation, revealing groundwater depth, cryosphere thickness, and crustal heat flux , 2005 .

[35]  James B. Garvin,et al.  Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA) , 1999 .

[36]  Lionel Wilson,et al.  Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release , 2003 .

[37]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[38]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.