The auditory dorsal pathway: Orienting vision

A particularly prominent model of auditory cortical function proposes that a dorsal brain pathway, emanating from the posterior auditory cortex, is primarily concerned with processing the spatial features of sounds. In the present paper, we outline some difficulties with a strict functional interpretation of this pathway, and highlight the recent trend to understand this pathway in terms of one that uses acoustic information to guide motor output towards objects of interest. In this spirit, we consider the possibility that some of the auditory spatial processing activity that has been observed in the dorsal pathway may actually be understood as a form of action processing in which the visual system may be guided to a particular location of interest. In this regard, attentional orientation may be considered a low-level form of action planning. Incorporating an auditory-guided motor aspect to the dorsal pathway not only offers a more holistic account of auditory processing, but also provides a more ecologically valid perspective on auditory processing in dorsal brain regions.

[1]  B. Repp Sensorimotor synchronization: A review of the tapping literature , 2005, Psychonomic bulletin & review.

[2]  Lawrence M. Ward,et al.  Spatial attention modulates activity in a posterior “where” auditory pathway , 2005, Neuropsychologia.

[3]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[4]  E. Zarahn,et al.  The Role of Prefrontal Cortex in Sensory Memory and Motor Preparation: An Event-Related fMRI Study , 2000, NeuroImage.

[5]  J. Lynch,et al.  The parieto‐collicular pathway: anatomical location and contribution to saccade generation , 2003, The European journal of neuroscience.

[6]  B. Clementz,et al.  Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans , 2008, Brain and Cognition.

[7]  Beatriz Luna,et al.  Circuitry underlying temporally extended spatial working memory , 2007, NeuroImage.

[8]  G H Recanzone,et al.  Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. , 2000, Journal of neurophysiology.

[9]  James Rowland Angell Psychology; An Introductory Study of the Structure and Function of Human Consciousness , 2009 .

[10]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[11]  H. Heffner,et al.  Visual factors in sound localization in mammals , 1992, The Journal of comparative neurology.

[12]  I. Meister,et al.  Involvement of the Superior Temporal Cortex and the Occipital Cortex in Spatial Hearing: Evidence from Repetitive Transcranial Magnetic Stimulation , 2004, Journal of Cognitive Neuroscience.

[13]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[14]  Lucas Spierer,et al.  Interactions between auditory ‘what’ and ‘where’ pathways revealed by enhanced near-threshold discrimination of frequency and position , 2008, Neuropsychologia.

[15]  D. Heeger,et al.  Sustained Activity in Topographic Areas of Human Posterior Parietal Cortex during Memory-Guided Saccades , 2006, The Journal of Neuroscience.

[16]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[17]  R. Töpper,et al.  Role of the Posterior Parietal Cortex in Spatial Hearing , 2002, The Journal of Neuroscience.

[18]  R H Gilkey,et al.  The accuracy of absolute localization judgments for speech stimuli. , 1995, Journal of vestibular research : equilibrium & orientation.

[19]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[20]  C. Prablanc,et al.  Saccadic responses evoked by presentation of visual and auditory targets , 2004, Experimental Brain Research.

[21]  D. Munoz Commentary: saccadic eye movements: overview of neural circuitry. , 2002, Progress in brain research.

[22]  James W. Lewis,et al.  Lefties Get It Right When Hearing Tool Sounds , 2006, Journal of Cognitive Neuroscience.

[23]  Robert J Zatorre,et al.  The Role of Auditory and Premotor Cortex in Sensorimotor Transformations , 2009, Annals of the New York Academy of Sciences.

[24]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[25]  H. Heffner,et al.  Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata , 2007, Hearing Research.

[26]  Ankoor S. Shah,et al.  Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. , 2004, Journal of neurophysiology.

[27]  B. Rockstroh,et al.  Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades , 2005, Neuroreport.

[28]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[29]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[30]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[31]  Synnöve Carlson,et al.  Multisensory Integration of Sounds and Vibrotactile Stimuli in Processing Streams for “What” and “Where” , 2009, The Journal of Neuroscience.

[32]  Robert T. Knight,et al.  Cerebral Responses to Change in Spatial Location of Unattended Sounds , 2007, Neuron.

[33]  S G Lomber,et al.  Role of the superior colliculus in analyses of space: Superficial and intermediate layer contributions to visual orienting, auditory orienting, and visuospatial discriminations during unilateral and bilateral deactivations , 2001, The Journal of comparative neurology.

[34]  Jean Régis,et al.  Ultra-Rapid Sensory Responses in the Human Frontal Eye Field Region , 2009, The Journal of Neuroscience.

[35]  Hsuan-Chih Chen,et al.  Brain Responses to Segmentally and Tonally Induced Semantic Violations in Cantonese , 2005, Journal of Cognitive Neuroscience.

[36]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[37]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[39]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[40]  G. Recanzone,et al.  Comparison of relative and absolute sound localization ability in humans. , 1998, The Journal of the Acoustical Society of America.

[41]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Taira,et al.  Cortical Areas Related to Attention to 3D Surface Structures Based on Shading: An fMRI Study , 2001, NeuroImage.

[43]  M. Lassonde,et al.  Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects , 2008, Experimental Brain Research.

[44]  Claude Alain,et al.  Contribution of harmonicity and location to auditory object formation in free field: evidence from event-related brain potentials. , 2005, The Journal of the Acoustical Society of America.

[45]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[46]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[47]  Y. Cohen Multimodal activity in the parietal cortex , 2009, Hearing Research.

[48]  Melvyn A. Goodale,et al.  Action without perception in human vision , 2008, Cognitive neuropsychology.

[49]  Jonathan S. Cant,et al.  fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream , 2008, Experimental Brain Research.

[50]  Clayton E. Curtis,et al.  Persistent neural activity in the human frontal cortex when maintaining space that is “off the map” , 2009, Nature Neuroscience.

[51]  Michael Erb,et al.  Is there a role of visual cortex in spatial hearing? , 2004, The European journal of neuroscience.

[52]  C. J. Savage,et al.  Auditory-visual interaction in the generation of saccades in man , 2004, Experimental Brain Research.

[53]  D. Munoz,et al.  The eccentricity effect for auditory saccadic reaction times is independent of target frequency , 2010, Hearing Research.

[54]  B. Postle,et al.  Activity in Human Frontal Cortex Associated with Spatial Working Memory and Saccadic Behavior , 2000, Journal of Cognitive Neuroscience.

[55]  Daniel J Tollin,et al.  Sound-localization performance in the cat: the effect of restraining the head. , 2005, Journal of neurophysiology.

[56]  F. Bremmer,et al.  Localisation of Auditory Targets during Optokinetic Nystagmus , 2007, Perception.

[57]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[58]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[59]  J. Driver,et al.  Eye movement preparation causes spatially-specific modulation of auditory processing: New evidence from event-related brain potentials , 2008, Brain Research.

[60]  G. Recanzone,et al.  Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. , 2006, Journal of neurophysiology.

[61]  S. Clarke,et al.  Preserved use of spatial cues for sound segregation in a case of spatial deafness , 2003, Neuropsychologia.

[62]  Jazmin Camchong,et al.  Basal Ganglia-Thalamocortical Circuitry Disruptions in Schizophrenia During Delayed Response Tasks , 2006, Biological Psychiatry.

[63]  Marc Jeannerod,et al.  Spatially Oriented Behavior , 2011 .

[64]  Chris Rorden,et al.  Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention , 2009, Brain Stimulation.

[65]  Jonathan Hutchinson,et al.  What? When? And How? , 1890, The Hospital.

[66]  Juha Salmi,et al.  Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations , 2007, Brain Structure and Function.

[67]  J. Rauschecker,et al.  Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans , 1999, Nature Neuroscience.

[68]  T. Griffiths Sensory Systems: Auditory Action Streams? , 2008, Current Biology.

[69]  D. Poeppel,et al.  Towards a functional neuroanatomy of speech perception , 2000, Trends in Cognitive Sciences.

[70]  Juha Salmi,et al.  Selective attention to sound location or pitch studied with fMRI , 2006, Brain Research.

[71]  Trichur Raman Vidyasagar A neuronal model of attentional spotlight: parietal guiding the temporal , 1999, Brain Research Reviews.

[72]  S. Sterbing-D’Angelo,et al.  Behavioral/systems/cognitive Multisensory Space Representations in the Macaque Ventral Intraparietal Area , 2022 .

[73]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[74]  L. Jakobson,et al.  A neurological dissociation between perceiving objects and grasping them , 1991, Nature.

[75]  J. Thiran,et al.  Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study , 2000, NeuroImage.

[76]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[77]  Brian E. Russ,et al.  Auditory processing in the posterior parietal cortex. , 2005, Behavioral and cognitive neuroscience reviews.

[78]  R. Marrocco,et al.  Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention , 2002, Experimental Brain Research.

[79]  M. A. Frens,et al.  A quantitative study of auditory-evoked saccadic eye movements in two dimensions , 2004, Experimental Brain Research.

[80]  Deborah A Hall,et al.  Auditory Pathways: Are ‘What’ and ‘Where’ Appropriate? , 2003, Current Biology.

[81]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[82]  J. Rauschecker,et al.  A PET study of human auditory spatial processing , 1999, Neuroscience Letters.

[83]  Yale E. Cohen,et al.  Spatial and non-spatial auditory processing in the lateral intraparietal area , 2005, Experimental Brain Research.

[84]  Terrence R Stanford,et al.  Cortex Mediates Multisensory But Not Unisensory Integration in Superior Colliculus , 2007, The Journal of Neuroscience.

[85]  D. A. Benson,et al.  Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency , 1981, Brain Research.

[86]  Cheryl L. Grady,et al.  The contribution of the inferior parietal lobe to auditory spatial working memory , 2008 .

[87]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[88]  P. Skudlarski,et al.  Event-related fMRI of auditory and visual oddball tasks. , 2000, Magnetic resonance imaging.

[89]  R. Walker,et al.  Multisensory interactions in saccade target selection: Curved saccade trajectories , 2001, Experimental Brain Research.

[90]  E. Vaadia,et al.  Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. , 1986, Journal of neurophysiology.

[91]  Clayton E Curtis,et al.  Selection and maintenance of saccade goals in the human frontal eye fields. , 2006, Journal of neurophysiology.

[92]  Matthew R. G. Brown,et al.  Neural processes associated with antisaccade task performance investigated with event-related FMRI. , 2005, Journal of neurophysiology.

[93]  Christos Constantinidis,et al.  The sensory nature of mnemonic representation in the primate prefrontal cortex , 2001, Nature Neuroscience.

[94]  Hannu J. Aronen,et al.  Evidence for Dissociation of Spatial and Nonspatial Auditory Information Processing , 2001, NeuroImage.

[95]  R. S. J. Frackowiak,et al.  Human cortical areas selectively activated by apparent sound movement , 1994, Current Biology.

[96]  Henry Kennedy,et al.  Long-distance feedback projections to area V1: Implications for multisensory integration, spatial awareness, and visual consciousness , 2004, Cognitive, affective & behavioral neuroscience.

[97]  Clayton E. Curtis,et al.  Persistent neural activity during the maintenance of spatial position in working memory , 2008, NeuroImage.

[98]  A. John Van Opstal,et al.  Plasticity in human sound localization induced by compressed spatial vision , 2003, Nature Neuroscience.

[99]  S. Carlile,et al.  The localisation of spectrally restricted sounds by human listeners , 1999, Hearing Research.

[100]  F. Bremmer,et al.  Perisaccadic localization of auditory stimuli , 2009, Experimental Brain Research.

[101]  C Alain,et al.  Location and frequency cues in auditory selective attention. , 2001, Journal of experimental psychology. Human perception and performance.

[102]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[103]  L. Ada Working memory load modulates the auditory "what" and "where" neural networks , 2011 .

[104]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[105]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[106]  William E O'Neill,et al.  Auditory Spatial Perception Dynamically Realigns with Changing Eye Position , 2007, The Journal of Neuroscience.

[107]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[108]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[109]  Jeffrey R Binder,et al.  Human brain regions involved in recognizing environmental sounds. , 2004, Cerebral cortex.

[110]  Frank H. Guenther,et al.  Action–perception mismatch in tone-deafness , 2008, Current Biology.

[111]  Claude Alain,et al.  Working memory load modulates the auditory “What” and “Where” neural networks , 2011, NeuroImage.

[112]  Claude Alain,et al.  Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. , 2008, Cerebral cortex.

[113]  R. Humanski,et al.  Binaural and Monaural Localization of Sound in Two-Dimensional Space , 1990, Perception.

[114]  Simon R. Oldfield,et al.  Acuity of Sound Localisation: A Topography of Auditory Space. I. Normal Hearing Conditions , 1984, Perception.

[115]  D. Poeppel,et al.  Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language , 2004, Cognition.

[116]  S Martinkauppi,et al.  Working memory of auditory localization. , 2000, Cerebral cortex.

[117]  Ankoor S. Shah,et al.  Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. , 2007, Cerebral cortex.

[118]  Leslie G. Ungerleider,et al.  Dissociation of object and spatial visual processing pathways in human extrastriate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Jochen Kaiser,et al.  Processing of location and pattern changes of natural sounds in the human auditory cortex , 2007, NeuroImage.

[120]  T. R. Jordan,et al.  Perception and action in 'visual form agnosia'. , 1991, Brain : a journal of neurology.

[121]  E. Schröger,et al.  Fast preattentive processing of location: a functional basis for selective listening in humans , 1997, Neuroscience Letters.

[122]  B. Stein,et al.  Interactions among converging sensory inputs in the superior colliculus. , 1983, Science.

[123]  J. Mazziotta,et al.  Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. , 1998, Brain : a journal of neurology.

[124]  B. Shinn-Cunningham,et al.  Task-modulated “what” and “where” pathways in human auditory cortex , 2006, Proceedings of the National Academy of Sciences.

[125]  G. Rizzolatti,et al.  Spatial attention-determined modifications in saccade trajectories. , 1995, Neuroreport.

[126]  A Rees,et al.  Human brain areas involved in the analysis of auditory movement , 2000, Human brain mapping.

[127]  J. Hyvärinen,et al.  Functional properties of neurons in the temporo-parietal association cortex of awake monkey , 2004, Experimental Brain Research.

[128]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[129]  A John Van Opstal,et al.  Eye position determines audiovestibular integration during whole‐body rotation , 2010, The European journal of neuroscience.

[130]  Ravi S. Menon,et al.  Comparison of memory- and visually guided saccades using event-related fMRI. , 2004, Journal of neurophysiology.

[131]  A Merisalo,et al.  Location vs. frequency of pure tones as a basis of fast discrimination. , 1980, Acta psychologica.

[132]  M. Perenin Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects , 1997 .

[133]  Stephen R. Arnott,et al.  The Functional Organization of Auditory Working Memory as Revealed by fMRI , 2005, Journal of Cognitive Neuroscience.

[134]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[135]  M. Kubovy,et al.  Auditory and visual objects , 2001, Cognition.

[136]  Claude Alain,et al.  Dissociable memory- and response-related activity in parietal cortex during auditory spatial working memory. , 2010, Frontiers in psychology.

[137]  Doug J. K. Barrett,et al.  Response preferences for “what” and “where” in human non-primary auditory cortex , 2006, NeuroImage.

[138]  C. Grady,et al.  “What” and “where” in the human auditory system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[139]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[140]  E A Cabanis,et al.  Location of the human posterior eye field with functional magnetic resonance imaging. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[141]  William E O'Neill,et al.  Perception of auditory, visual, and egocentric spatial alignment adapts differently to changes in eye position. , 2010, Journal of neurophysiology.

[142]  B. Shinn-Cunningham,et al.  Reference Frame of the Ventriloquism Aftereffect , 2009, The Journal of Neuroscience.

[143]  Jörg Lewald,et al.  Eye-position effects in directional hearing , 1997, Behavioural Brain Research.

[144]  I. Peretz,et al.  Singing in congenital amusia. , 2009, The Journal of the Acoustical Society of America.

[145]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[146]  Per E. Roland,et al.  Functional Organisation of the Human Visual Cortex , 1993 .

[147]  Paavo Alku,et al.  Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex , 2006, Neuroscience Letters.

[148]  J. C. Middlebrooks,et al.  Two-dimensional sound localization by human listeners. , 1990, The Journal of the Acoustical Society of America.

[149]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[150]  D. Munoz,et al.  On your mark, get set: Brainstem circuitry underlying saccadic initiation , 2000 .

[151]  E. DeYoe,et al.  Distinct Cortical Pathways for Processing Tool versus Animal Sounds , 2005, The Journal of Neuroscience.

[152]  Ulrich Büttner,et al.  TMS evidence for smooth pursuit gain control by the frontal eye fields. , 2009, Cerebral cortex.

[153]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[154]  Luis C. Populin,et al.  Human sound localization: measurements in untrained, head-unrestrained subjects using gaze as a pointer , 2008, Experimental Brain Research.

[155]  Gian Luca Romani,et al.  “What” versus “Where” in the audiovisual domain: An fMRI study , 2006, NeuroImage.

[156]  G. Recanzone,et al.  Serial and parallel processing in the primate auditory cortex revisited , 2010, Behavioural Brain Research.

[157]  M. Cohen,et al.  Saccade latency in children and adults: effects of warning interval and target eccentricity. , 1977, Journal of experimental child psychology.

[158]  Anderson Tr,et al.  The accuracy of absolute localization judgments for speech stimuli. , 1995 .

[159]  J. Gottlieb Parietal mechanisms of target representation , 2002, Current Opinion in Neurobiology.

[160]  J. Rauschecker,et al.  A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind , 2000, The Journal of Neuroscience.

[161]  J. Rauschecker Processing of complex sounds in the auditory cortex of cat, monkey, and man. , 1997, Acta oto-laryngologica. Supplementum.

[162]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[163]  Simon R. Oldfield,et al.  Acuity of Sound Localisation: A Topography of Auditory Space. II. Pinna Cues Absent , 1984, Perception.

[164]  Parashkev Nachev,et al.  Space and the parietal cortex , 2007, Trends in Cognitive Sciences.

[165]  Joost X. Maier,et al.  Multisensory guidance of orienting behavior , 2009, Hearing Research.

[166]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[167]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.

[168]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[169]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[170]  Stephen R. Arnott,et al.  Distorting visual space with sound , 2006, Vision Research.

[171]  Stephanie Clarke,et al.  Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. , 2006, Cerebral cortex.

[172]  M. Wallace,et al.  Representation and integration of multiple sensory inputs in primate superior colliculus. , 1996, Journal of neurophysiology.

[173]  Jonathan S. Cant,et al.  Cerebral Cortex Advance Access published April 28, 2006 Attention to Form or Surface Properties Modulates Different Regions of Human , 2022 .

[174]  C. Pierrot-Deseilligny,et al.  Eye movement control by the cerebral cortex , 2004, Current opinion in neurology.

[175]  Georg Kerkhoff,et al.  On the Cerebral Organization of Elementary Visuospatial Perception , 1993 .

[176]  R. Zatorre,et al.  Where is 'where' in the human auditory cortex? , 2002, Nature Neuroscience.

[177]  William E O'Neill,et al.  Eye position and cross-sensory learning both contribute to prism adaptation of auditory space. , 2008, Progress in brain research.

[178]  Jörg Lewald,et al.  The effect of gaze eccentricity on perceived sound direction and its relation to visual localization , 1998, Hearing Research.

[179]  J. Duhamel,et al.  Saccadic Target Selection Deficits after Lateral Intraparietal Area Inactivation in Monkeys , 2002, The Journal of Neuroscience.

[180]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[181]  E. Saltzman,et al.  Action Representation of Sound: Audiomotor Recognition Network While Listening to Newly Acquired Actions , 2007, The Journal of Neuroscience.

[182]  L. Populin Monkey Sound Localization: Head-Restrained versus Head-Unrestrained Orienting , 2006, The Journal of Neuroscience.

[183]  A. Berthoz,et al.  An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. , 1999, Cerebral cortex.

[184]  Jochen Kaiser,et al.  Effects of feature-selective attention on auditory pattern and location processing , 2008, NeuroImage.

[185]  G. Rizzolatti,et al.  Orienting of attention and eye movements , 2004, Experimental Brain Research.

[186]  E. Langendijk,et al.  Sound localization in the presence of one or two distracters. , 2001, The Journal of the Acoustical Society of America.

[187]  Anthony D. Cate,et al.  Auditory Attention Activates Peripheral Visual Cortex , 2009, PloS one.

[188]  Claude Alain,et al.  Assessing the auditory dual-pathway model in humans , 2004, NeuroImage.

[189]  G. Green,et al.  Cortical Activation during Perception of a Rotating Wide-Field Acoustic Stimulus , 1999, NeuroImage.

[190]  J. Rauschecker Parallel Processing in the Auditory Cortex of Primates , 1998, Audiology and Neurotology.

[191]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[192]  Psychology: An Introductory Study of the Structure and Function of Human Consciousness. , 1905 .

[193]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[194]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[195]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[196]  Keiji Tanaka,et al.  Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. , 1988, Journal of neurophysiology.

[197]  Alain Vighetto,et al.  Optic Ataxia: A Specific Disorder in Visuomotor Coordination , 1983 .

[198]  P. Goldman-Rakic,et al.  An auditory domain in primate prefrontal cortex , 2002, Nature Neuroscience.

[199]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[200]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[201]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[202]  Jonathan S. Cant,et al.  Crinkling and crumpling: An auditory fMRI study of material properties , 2008, NeuroImage.

[203]  The effect of eye position on the orientation of sound lateralization , 2007, Acta oto-laryngologica. Supplementum.

[204]  E. G. Jones,et al.  Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys , 1997, The Journal of comparative neurology.

[205]  G. S. Russo,et al.  Frontal eye field activity preceding aurally guided saccades. , 1994, Journal of neurophysiology.

[206]  Neil G. Muggleton,et al.  Human frontal eye fields and target switching , 2010, Cortex.

[207]  Claude Alain,et al.  Effects of perceptual context on event-related brain potentials during auditory spatial attention. , 2002, Psychophysiology.

[208]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[209]  H. Sakata,et al.  Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. , 1996, Neuroreport.

[210]  G. S. Russo,et al.  Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields. , 1993, Journal of neurophysiology.

[211]  F L Wightman,et al.  Headphone simulation of free-field listening. II: Psychophysical validation. , 1989, The Journal of the Acoustical Society of America.

[212]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[213]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[214]  Alan C. Evans,et al.  Auditory Attention to Space and Frequency Activates Similar Cerebral Systems , 1999, NeuroImage.

[215]  Ilana B. Witten,et al.  Why Seeing Is Believing: Merging Auditory and Visual Worlds , 2005, Neuron.

[216]  W H Ehrenstein,et al.  Auditory-visual spatial integration: a new psychophysical approach using laser pointing to acoustic targets. , 1998, The Journal of the Acoustical Society of America.

[217]  Honorata Hafke Nonconscious control of fundamental voice frequency. , 2008, The Journal of the Acoustical Society of America.

[218]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.