miR-342-5p downstream to Notch enhances arterialization of endothelial cells in response to shear stress by repressing MYC

[1]  Shondra M. Pruett-Miller,et al.  cBAF complex components and MYC cooperate early in CD8+ T cell fate , 2022, Nature.

[2]  J. Kitajewski,et al.  Endothelial Cell Fate Determination: A Top Notch Job in Vascular Decision-Making. , 2022, Cold Spring Harbor perspectives in medicine.

[3]  M. Morimoto,et al.  Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell‐specific liposomal siRNA delivery system , 2022, Cancer science.

[4]  Hua Han,et al.  Notch activation suppresses endothelial cell migration and sprouting via miR-223-3p targeting Fbxw7 , 2022, In Vitro Cellular & Developmental Biology - Animal.

[5]  C. Indolfi,et al.  Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician , 2022, Journal of clinical medicine.

[6]  Yu-sheng Wang,et al.  Notch activation promotes endothelial quiescence by repressing MYC expression via miR-218 , 2021, Molecular therapy. Nucleic acids.

[7]  Hongtuan Zhang,et al.  CircGNG4 Promotes the Progression of Prostate Cancer by Sponging miR-223 to Enhance EYA3/c-myc Expression , 2021, Frontiers in Cell and Developmental Biology.

[8]  M. Schwartz,et al.  Developmental Perspectives on Arterial Fate Specification , 2021, Frontiers in Cell and Developmental Biology.

[9]  B. Krause,et al.  Specific arterio-venous transcriptomic and ncRNA-RNA interactions in human umbilical endothelial cells: A meta-analysis , 2021, iScience.

[10]  L. Poulain,et al.  Tumor Suppressive Role of miR-342-5p in Human Chondrosarcoma Cells and 3D Organoids , 2021, International journal of molecular sciences.

[11]  M. Caputo,et al.  Nrf2-Keap-1 imbalance under acute shear stress induces inflammatory response in venous endothelial cells , 2021, Perfusion.

[12]  K. Hirschi,et al.  Vascular endothelial cell specification in health and disease , 2021, Angiogenesis.

[13]  V. Bautch,et al.  SMAD6 transduces endothelial cell flow responses required for blood vessel homeostasis , 2021, Angiogenesis.

[14]  M. Potente,et al.  Arterialization requires the timely suppression of cell growth , 2020, Nature.

[15]  Shing‐Jong Lin,et al.  miR-548j-5p regulates angiogenesis in peripheral artery disease , 2020, Scientific reports.

[16]  T. Couffinhal,et al.  Fluid Shear Stress Sensing by the Endothelial Layer , 2020, Frontiers in Physiology.

[17]  F. le Noble,et al.  Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function , 2020, Communications Biology.

[18]  I. Khalil,et al.  Lipid Nanoparticles for Cell-Specific in Vivo Targeted Delivery of Nucleic Acids. , 2020, Biological & pharmaceutical bulletin.

[19]  Yi-lei Xiao,et al.  Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis , 2020, Aging.

[20]  J. Reader,et al.  The Guidance Receptor Plexin D1 Moonlights as an Endothelial Mechanosensor , 2019, Nature.

[21]  L. Bolund,et al.  Single-Cell Transcriptome Atlas of Murine Endothelial Cells , 2020, Cell.

[22]  M. Simons,et al.  Isoform-Specific Roles of ERK1 and ERK2 in Arteriogenesis , 2019, Cells.

[23]  Chuan Liu,et al.  miR-342-5p inhibits expression of Bmp7 to regulate proliferation, differentiation and migration of osteoblasts. , 2019, Molecular immunology.

[24]  K. Hirschi,et al.  Molecular regulation of arteriovenous endothelial cell specification , 2019, F1000Research.

[25]  Y. Toh,et al.  Determination of critical shear stress for maturation of human pluripotent stem cell‐derived endothelial cells towards an arterial subtype , 2019, Biotechnology and bioengineering.

[26]  F. Gao,et al.  Longterm Exercise-Derived Exosomal miR-342-5p: A Novel Exerkine for Cardioprotection , 2019, Circulation research.

[27]  Arndt F. Siekmann,et al.  Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom‐Up versus Top‐Down , 2019, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  A. Groisman,et al.  Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos , 2018, Nature Communications.

[29]  H. Ford,et al.  Eya3 partners with PP2A to induce c-Myc stabilization and tumor progression , 2018, Nature Communications.

[30]  A. Yap,et al.  Notching a New Pathway in Vascular Flow Sensing. , 2018, Trends in cell biology.

[31]  T. Chittenden,et al.  Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification , 2017, Nature Communications.

[32]  M. Eilers,et al.  MYC and tumor metabolism: chicken and egg , 2017, The EMBO journal.

[33]  William J. Polacheck,et al.  A non-canonical Notch complex regulates adherens junctions and vascular barrier function , 2017, Nature.

[34]  R. Adams,et al.  Dll4 and Notch signalling couples sprouting angiogenesis and artery formation , 2017, Nature Cell Biology.

[35]  L. Larsson,et al.  MYC Modulation around the CDK2/p27/SKP2 Axis , 2017, Genes.

[36]  Arndt F. Siekmann,et al.  Endothelial Notch signalling limits angiogenesis via control of artery formation , 2017, Nature Cell Biology.

[37]  Cornelia Denz,et al.  Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues , 2017, Nature Cell Biology.

[38]  C. Betsholtz,et al.  Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling , 2017, Nature Cell Biology.

[39]  Sheng-Xi Wu,et al.  miR-342-5p Regulates Neural Stem Cell Proliferation and Differentiation Downstream to Notch Signaling in Mice , 2017, Stem cell reports.

[40]  C. Yap,et al.  Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins , 2017, Biomechanics and modeling in mechanobiology.

[41]  Li Wang,et al.  miR‐342‐5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling , 2016, Journal of the American Heart Association.

[42]  P. Carmeliet,et al.  FOXO1 couples metabolic activity and growth state in the vascular endothelium , 2015, Nature.

[43]  E. Huang,et al.  Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice , 2014, Development.

[44]  Yan Zhang,et al.  miR-342-5p decreases ankyrin G levels in Alzheimer's disease transgenic mouse models. , 2014, Cell reports.

[45]  B. Fisslthaler,et al.  MicroRNA-223 Antagonizes Angiogenesis by Targeting &bgr;1 Integrin and Preventing Growth Factor Signaling in Endothelial Cells , 2013, Circulation research.

[46]  A. Pries,et al.  Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis , 2010, Development.

[47]  Hideki Uosaki,et al.  Convergence of Notch and β-catenin signaling induces arterial fate in vascular progenitors , 2010, The Journal of cell biology.

[48]  Larry V McIntire,et al.  Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal. , 2010, American journal of physiology. Heart and circulatory physiology.

[49]  Thomas Korff,et al.  Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia , 2009, Nature Protocols.

[50]  M. Washington,et al.  Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer , 2008, Oncogene.

[51]  Arnold P. G. Hoeks,et al.  Wall shear stress as measured in vivo: consequences for the design of the arterial system , 2008, Medical & Biological Engineering & Computing.

[52]  Scott E Fraser,et al.  Vascular remodeling of the mouse yolk sac requires hemodynamic force , 2007, Development.

[53]  Marcus Fruttiger,et al.  Development of the retinal vasculature , 2007, Angiogenesis.

[54]  N. Moradi,et al.  miR-342-5p Expression Levels in Coronary Artery Disease Patients and its Association with Inflammatory Cytokines. , 2018, Clinical laboratory.

[55]  Xabier Agirre,et al.  Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature. , 2013, Blood.