Accurate eigenvalue decomposition of arrowhead matrices and applications

We present a new algorithm for solving an eigenvalue problem for a real symmetric arrowhead matrix. The algorithm computes all eigenvalues and all components of the corresponding eigenvectors with high relative accuracy in O(n 2 ) operations. The algorithm is based on a shift-and-invert approach. Double precision is eventually needed to compute only one element of the inverse of the shifted matrix. Each eigenvalue and the corresponding eigenvector can be computed separately, which makes the algorithm adaptable for parallel computing. Our results extend to Hermitian arrowhead matrices, real symmetric diagonal-plus-rank-one matrices and singular value decomposition of real triangular arrowhead matrices.

[1]  A. Melman Numerical solution of a secular equation , 1995 .

[2]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[3]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[4]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[5]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[6]  G. Stewart,et al.  Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .

[7]  Joshua Jortner,et al.  Intramolecular Radiationless Transitions , 1968 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Suely Oliveira A new parallel chasing algorithm for transforming arrowhead matrices to tridiagonal form , 1998, Math. Comput..

[10]  J. W. Gadzuk Localized vibrational modes in Fermi liquids. General theory , 1981 .

[11]  J. Barlow Error analysis of update methods for the symmetric eigenvalue problem , 1993 .

[12]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[13]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[14]  S. B. Cavalcanti,et al.  Spontaneous emission and qubit transfer in spin-1/2 chains , 2010 .

[15]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[16]  Carlos F. Borges,et al.  A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .