A residual–based error estimator for BEM–discretizations of contact problems

Summary.We develop an a posteriori error estimate for boundary element solutions of static contact problems without friction. The presented result is based on an error estimate for linear pseudodifferential equations and on a certain commutator property for pseudodifferential operators. A heuristic extension of the obtained error estimate to frictional contact problems is presented, too. Numerical examples indicate a good performance of the error estimator for both the frictionless and the frictional problem.

[1]  Hou De Han A direct boundary element method for Signorini problems , 1990 .

[2]  Olaf Steinbach,et al.  On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries , 2001 .

[3]  Martin Costabel,et al.  Invertibility of the biharmonic single layer potential operator , 1996 .

[4]  Peter Wriggers,et al.  Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..

[5]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[6]  Joachim Gwinner,et al.  A boundary element procedure for contact problems in plane linear elastostatics , 1993 .

[7]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[8]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[9]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology : Volume 4 Integral Equations and Numerical Methods , 2000 .

[10]  David Kinderlehrer,et al.  Remarks about Signorini's problem in linear elasticity , 1981 .

[11]  J. Jarusek,et al.  EXISTENCE RESULTS FOR THE STATIC CONTACT PROBLEM WITH COULOMB FRICTION , 1998 .

[12]  Wolfgang L. Wendland,et al.  A symmetric boundary method for contact problems with friction , 1999 .

[13]  Peter Wriggers,et al.  An adaptive finite element method for frictionless contact problems , 1995 .

[14]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[15]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[16]  C. Eck,et al.  Existence results for the semicoercive static contact problem with Coulomb friction , 2000 .

[17]  Olaf Steinbach,et al.  A note on initial higher‐order convergence results for boundary element methods with approximated boundary conditions , 2000 .

[18]  J. Jarusek Contact problems with bounded friction. Coercive case , 1983 .

[19]  Wolfgang L. Wendland,et al.  Local residual-type error estimates for adaptive boundary element methods on closed curves , 1993 .

[20]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[21]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[22]  W. Spann,et al.  Error Estimates for the Boundary Element Approximation of a Contact Problem in Elasticity , 1997 .

[23]  Olaf Steinbach,et al.  The construction of some efficient preconditioners in the boundary element method , 1998, Adv. Comput. Math..

[24]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[25]  Peter Wriggers,et al.  An adaptive finite element algorithm for contact problems in plasticity , 1995 .

[26]  J. T. Oden,et al.  A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .