Genion, an accurate tool to detect gene fusion from long transcriptomics reads

[1]  Michael C. Schatz,et al.  LongTron: Automated Analysis of Long Read Spliced Alignment Accuracy , 2020, bioRxiv.

[2]  Gavin R. Oliver,et al.  Computational Detection of Known Pathogenic Gene Fusions in a Normal Tissue Database and Implications for Genetic Disease Research , 2020, Frontiers in Genetics.

[3]  M. Ritchie,et al.  Opportunities and challenges in long-read sequencing data analysis , 2020, Genome Biology.

[4]  Chittibabu Guda,et al.  Pan-Cancer Analysis Reveals the Diverse Landscape of Novel Sense and Antisense Fusion Transcripts , 2020, Molecular therapy. Nucleic acids.

[5]  Marcel H. Schulz,et al.  AERON: Transcript quantification and gene-fusion detection using long reads , 2020, bioRxiv.

[6]  Inanc Birol,et al.  Fusion-Bloom: fusion detection in assembled transcriptomes , 2019, Bioinform..

[7]  B. Haas,et al.  Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods , 2019, Genome Biology.

[8]  Gavin R. Oliver,et al.  A tailored approach to fusion transcript identification increases diagnosis of rare inherited disease , 2019, PloS one.

[9]  Hui Li,et al.  Gene fusions and chimeric RNAs, and their implications in cancer , 2019, Genes & diseases.

[10]  E. Lehnert,et al.  Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers , 2019, Proceedings of the National Academy of Sciences.

[11]  Joshua M. Korn,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[12]  Bo Liu,et al.  deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index , 2019, Genome Biology.

[13]  Ryan R. Wick,et al.  Badread: simulation of error-prone long reads , 2019, J. Open Source Softw..

[14]  W. Han,et al.  Perspective Insight into Future Potential Fusion Gene Transcript Biomarker Candidates in Breast Cancer , 2018, International journal of molecular sciences.

[15]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[16]  Publisher's Note , 2018, Anaesthesia.

[17]  Hui Li,et al.  Chimeric RNAs in cancer and normal physiology , 2017, Wiley interdisciplinary reviews. RNA.

[18]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[19]  Zhijie Kang,et al.  The Philadelphia chromosome in leukemogenesis , 2016, Chinese journal of cancer.

[20]  Yanjun Qi,et al.  Recurrent chimeric fusion RNAs in non-cancer tissues and cells , 2016, Nucleic acids research.

[21]  R. Wilson,et al.  INTEGRATE: gene fusion discovery using whole genome and transcriptome data , 2016, Genome research.

[22]  Cedric Chauve,et al.  Chaining Fragments in Sequences: to Sweep or Not (Extended Abstract) , 2015, SPIRE.

[23]  M. Cugmas,et al.  On comparing partitions , 2015 .

[24]  Brian S. Roberts,et al.  Recurrent read-through fusion transcripts in breast cancer , 2014, Breast Cancer Research and Treatment.

[25]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[26]  D. Tindall,et al.  Alternatively spliced androgen receptor variants. , 2011, Endocrine-related cancer.

[27]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[28]  Krishna R. Kalari,et al.  A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines , 2011, Nucleic acids research.

[29]  T. Blumenthal,et al.  Trans‐splicing , 2011, Wiley interdisciplinary reviews. RNA.

[30]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[31]  Francesca Demichelis,et al.  Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. , 2011, Genome research.

[32]  Arul M Chinnaiyan,et al.  Prevalence of TMPRSS2-ERG Fusion Prostate Cancer among Men Undergoing Prostate Biopsy in the United States , 2009, Clinical Cancer Research.

[33]  M. Rubin,et al.  SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. , 2009, Cancer research.

[34]  Jorge Cortes,et al.  Molecular biology of bcr-abl1-positive chronic myeloid leukemia. , 2009, Blood.

[35]  Y Pawitan,et al.  TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort , 2007, Oncogene.

[36]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[37]  P. Lange,et al.  Newer potential biomarkers in prostate cancer. , 2007, Reviews in urology.

[38]  R. Veitia,et al.  Reverse transcriptase template switching and false alternative transcripts. , 2006, Genomics.

[39]  David Botstein,et al.  BMC Genomics BioMed Central Methodology article Universal Reference RNA as a standard for microarray experiments , 2004 .

[40]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[41]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[42]  B. Trask,et al.  Segmental duplications: organization and impact within the current human genome project assembly. , 2001, Genome research.

[43]  M. Long,et al.  A new function evolved from gene fusion. , 2000, Genome research.

[44]  S. Schwartz,et al.  A new human prostate carcinoma cell line, 22Rv1 , 1999, In Vitro Cellular & Developmental Biology - Animal.

[45]  H. Soule,et al.  Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. , 1973, The Journal of biological chemistry.